Anzeige

Customer Service

Ein Automat wie ein Chatbot hat keinen eigenen Willen, keine Gefühle und kein subjektives Empfinden. Aber er kann so tun als ob. Durch das kontinuierliche Lernen und die Sammlung von Erfahrungen kann ein Automat im Customer Service einem empathischen Menschen im Turing-Test immer näher kommen.

Wie gut sind Lösungen im Customer Service, die auf KI und Chatbots basieren? Dieser Frage ist Pegasystems nachgegangen. Dabei zeigt sich, dass für den Erfolg einer solchen Lösung vor allem drei Faktoren ausschlaggebend sind: die „Empathie“ des Automaten, die Fähigkeit, kontextuelle Daten im Kundendialog in Echtzeit zu berücksichtigen und die unmittelbare Bereitstellung relevanter Antworten. Entscheidend ist, dass keine standardisierten, statischen, vordefinierten Antworten gegeben werden, sondern immer dynamische Antworten mit Kontextbezug, etwa mit Berücksichtigung der Zeit, in der sich ein Kunde in einer Warteschleife befand. Aufgabe muss sein, auch in einem Chat das Gespräch so realistisch wie möglich zu gestalten.

Digitale Kontaktaufnahme

Bei der digitalen Kontaktaufnahme eines Kunden etwa über einen Chat geht es zunächst um die Analyse von Sentiment, Intent und Klassen sowie die Identifizierung von Entitäten. Die Sentimentanalyse ermittelt die emotionale Disposition des Kunden. Mit der Analyse des Intents wird die allgemeine Absicht des Kunden herausgefiltert, zum Beispiel, ob er einen Informationsbedarf hat, eine Beschwerde einreichen oder eine Bestellung tätigen möchte. Die Klassifizierung dient der konkreten thematischen Einordnung des Anliegens. Mit der Ermittlung von Entitäten wie Name oder Telefonnummer wird der Kunde schließlich eindeutig identifiziert. Für die Analyse von Sentiment, Intent, Klassen und Entitäten werden vor allem regelbasierte Verfahren, analytische Modelle und KI-Algorithmen genutzt, zum Beispiel vortrainierte Machine-Learning-Algorithmen. 

In einem weiteren Schritt müssen die Analyseergebnisse mit den bereits vorhandenen Informationen angereichert werden. Dabei geht es um die Kunden- und Kontakthistorie, deren Ermittlung einen Zugriff auf alle relevanten Datenquellen erfordert – Stichwort Big-Data-Analytics.

Next-Best-Action-Strategie

Mit diesen Schritten sind die Grundlagen für eine optimale Umsetzung einer Next-Best-Action-Strategie geschaffen, das heißt die Ableitung der bestmöglichen Aktivität. Bei der Next-Best-Action sind drei Stufen zu unterscheiden. Der Automat eliminiert nicht-relevante Antworten, berechnet Wahrscheinlichkeiten und berücksichtigt Priorisierungsregeln, also, ob die Geschäftsziele oder die Empathie und damit der Kunde im Vordergrund stehen. Ein Beispiel im Verkaufsprozess zeigt die Möglichkeiten: Sucht ein Kunde ein preiswertes Produkt, kann bei hoher Kundenpriorität zielgenau ein adäquates Produkt angeboten werden. Liegt die Priorität hingegen auf dem Unternehmensinteresse kann ein teureres Produkt gewählt werden, etwa mit argumentativer Unterstützung hinsichtlich Qualität oder Service. Wichtig ist dabei vor allem, dass ein Automat relevante, empathische und schnelle Antworten gibt, das heißt, die Entscheidung für die Next-Best-Action muss in kürzester Zeit getroffen werden. Im Kundendialog selbst müssen dann immer auch alle Informationen, die sich in Echtzeit aus der Interaktion mit dem Kunden ergeben, für den Automaten präsent sein und für die weitere Entscheidungsfindung genutzt werden. 

Eine moderne Bot-Lösung sollte immer die Möglichkeit bieten, einen Ausgleich zwischen Unternehmens- und Kundeninteresse zu schaffen, folglich entweder die eigenen Geschäftsziele oder den Kundenfokus zu priorisieren. So könnte zum Beispiel erstens eine hohe Kundenzufriedenheit adressiert werden, zweitens die Verkaufsförderung im Vordergrund stellen oder drittens auf eine geringe Call-Handling-Time abgezielt werden.

Drei Ebenen beachten

Generell sind bei der Einführung digitaler Lösungen wie Self-Services, Chatbots oder intelligenter virtueller Assistenten drei Ebenen zu beachten: die Festlegung deterministischer Regeln nach klassischen Wenn-Dann-Verfahren, die Konzeption analytischer Modelle und die Definition von Priorisierungsregeln. Gerade die Konzipierung der analytische Modelle ist eine zeit- und kostenintensive Tätigkeit – eine klassische Aufgabe von derzeit im Markt gefragten Data Scientists. Mit entsprechenden Lösungen können solche Modelle allerdings auch automatisiert realisiert und kontinuierlich optimiert werden.

„Es ist nicht absehbar, dass eine KI-basierte Chatbot-Lösung einen empathischen Menschen komplett ersetzen und damit auch den Sieg im Turing-Test davontragen könnte“, erklärt Dr. Kay Knoche, Principal Solution Consultant bei Pegasystems (im Bild). „Aber mit der fortschreitenden Entwicklung begegnen solche Lösungen dem Menschen immer mehr auf Augenhöhe. Und eines darf dabei auch nicht vergessen werden. Ein Automat bietet auch Vorteile. Er ist kostengünstiger und hat im Vergleich zu einem Menschen nie schlechte Laune, was gerade im Beschwerdemanagement sicherlich nicht von Nachteil ist.“

www.pega.com/de


Artikel zu diesem Thema

User Experience
Jul 20, 2020

Wie die User Experience im E-Commerce zum Geschäftserfolg beiträgt

Die „User Experience“ ist heute auch im Online-Marketing und speziell bei der…
Idee Innovation
Jul 14, 2020

Deutsche glauben an Erfolg durch neue Technologien

Das Markt- und Meinungsforschungsinstitut YouGov hat im Auftrag der Alibaba Group die…
Chatbot
Jul 01, 2020

Gründe für den (Nicht-) Einsatz von Chatbots

Das Wort Chatbots ist immer häufiger zu lesen und immer mehr Leute reden oder schreiben…

Weitere Artikel

Kundenbewertung

Personalisierung in der Contentausspielung ein Muss

Wie steht es um das Trend-Thema Personalisierung in der Content- und Produktausspielung? Dazu hat Optimizely insgesamt 100 Technologieexperten aus Unternehmen in Nordamerika, Europa, Asien, Afrika sowie in Australien und Neuseeland befragt.
SEO Keywords

SEO: Neues KI-Tool erleichtert Keyword-Analyse

Eine umfassende Keyword-Recherche bleibt die Voraussetzung für eine erfolgreiche Suchmaschinenoptimierung (SEO). Nur wenn fortlaufend wertvolle Keyword-Potenziale identifiziert werden, kann die Auffindbarkeit zu bestimmten Themen in den Suchergebnissen…
YouTube

YouTube-SEO: Auf welche Ranking-Faktoren kommt es an?

Mit rund 2,3 Milliarden aktiven Nutzern weltweit gilt YouTube nach Google als zweitgrößte Suchmaschine der Welt. Direkt nach Facebook gehört die Videoplattform außerdem zu den meistgenutzten Social-Media-Kanälen. Daher sollten sich Unternehmen unbedingt die…
Black Friday

Black Friday 2021: Umsatz- und Traffic-Quellen

Black Friday verlief dieses Jahr anders als erwartet, und zwar weltweit. Der Gesamtvolumen der Online-Bestellungen am letzten Freitag im November war etwas niedriger als im Vorjahr; der Zeitraum für Sonderangebote verlängerte sich von einigen Tagen auf einige…
Digitales Marleting

Google-Ranking verbessern mit passenden SEO-Tools

Die Suchmaschinenoptimierung ist eine wirksame Methode für organisches Online-Marketing, aber ihre Inhalte sind ein Fachgebiet für sich. Um den Überblick behalten zu können, wurden SEO-Tools entworfen.
Retour

Behavioral Design senkt Retourenquote im E-Commerce

Retouren haben einen massiven Einfluss auf die CO2-Bilanz der gesamten Branche, kosten E-Commerce-Unternehmen Geld und Kund:innen Zeit. Keine Frage also, dass eine Retourensenkung im Interesse aller Beteiligten liegt. Doch wie können Online-Händler ihre…

Anzeige

Jetzt die smarten News aus der IT-Welt abonnieren! 💌

Mit Klick auf den Button "Zum Newsletter anmelden" stimme ich der Datenschutzerklärung zu.