Anzeige

Analyse

Der Markt für Knowledge Graphen wächst in rasantem Tempo. Das verdeutlicht die aktuelle Umfrage „Technology Executive Priorities for Knowledge Graphs“. Die Umfrage wirft einen Blick auf den Einsatz von Knowledge Graphen in Unternehmen, die zentralen Herausforderungen bei der Einführung und die Auswirkungen auf den Geschäftserfolg.

Knowledge Graphen stellen semantische Wissensdatenbanken dar, in denen Informationen miteinander verknüpft und innerhalb ihres Kontexts abgefragt werden können. Der Einblick in die Datenverbindungen liefert hohe Transparenz und eine fundierte Basis für die Entscheidungsfindung. Zu den Anwendungsfällen von Knowledge Graphen gehören allgemeine Analysen und Prognosen, die Planungen von Was-wäre-wenn-Szenarien sowie die Kontextualisierung von KI- und Machine-Learning-Verfahren.

Die Corona-Pandemie und die daraus resultierende Unterbrechung von Lieferketten und Geschäftsprozessen sowie die Verlagerung der Arbeitswelt ins Home Office haben die Grenzen und Schwachstellen von herkömmlichen Systemen und IT-Lösungen in Unternehmen klar verdeutlicht. So überrascht es nicht, dass mehr und mehr Führungskräfte den Wert von Knowledge Graphen für sich entdecken und über die Implementierung bzw. Erweiterung entsprechender Systeme nachdenken. Die Mehrheit der befragten IT-Entscheidungsträger (89%) verfügt über einen konkreten Plan, die Nutzung von Knowledge Graphen in den nächsten 12 Monaten auszuweiten.

Die wichtigsten Ergebnisse im Überblick:

  • Die Mehrheit der Befragten (88%) sind der Überzeugung, dass sich der Einsatz von Knowledge Graphen positiv auf den Gesamterfolg des Unternehmens auswirkt. Dazu zählen Produktivität (96%) und die Genauigkeit und Prozessoptimierung von Machine-Learning-Verfahren (92%).
  • Fast alle Befragten (97%) geben an, dass das Potential von Knowledge Graphen in ihrem Unternehmen noch nicht ausgeschöpft ist. Insbesondere bei der Optimierung von Prognosen (Forecasting) und Analysen wird daher eine intensivere Nutzung erwartet.
  • Zu den drei wichtigsten Gründen für die Implementierung von Knowledge Graphen gehören die Verbesserung von Systemen für Machine-Learning-Verfahren und künstliche Intelligenz (60%), die Erschließung neuer Einnahmequellen (50%) und die Verknüpfung von Datensilos (50%), um Informationen zugänglich zu machen.
  • Die größten Barrieren für den Einsatz von Knowledge Graphen sehen die Befragten in starren Datenmodellen (53%), bereichsübergreifenden Buy-Ins (52%), Datenklassifizierung und -architektur (51%) sowie dem allgemeinen Fachkräftemangel (51%).

Die Umfrage sollte hier zum Download verfügbar sein.

www.Neo4j.com


Weitere Artikel

Business Intelligence

Business Intelligence mit automatisierter Datenintegration optimieren

Business Intelligence (BI) ist maßgeblich am Unternehmenserfolg beteiligt. Laut einer Studie von Dimensional Research nutzen 98 Prozent der Firmen bereits eine Form von BI.
Data Scientist

Data Scientists und Data Engineers bleiben Mangelware

Der Einsatz von Data Analytics-Lösungen in deutschen Unternehmen wird unter anderem durch den Mangel verfügbarer Data Scientists und Data Engineers gebremst. Deshalb investieren die am Markt agierenden Serviceanbieter derzeit verstärkt in die entsprechende…
Netzwerk

Real vs. ideal: Der Brownfield-Ansatz

Die digitale Transformation und die Vernetzung der Produktion ist Ziel im neuen Industrie 4.0 Zeitalter.
Datenstrategie

Chancen und Risiken der Datenstrategie der Bundesregierung

Dazu ein Kommentar von Wim Stoop, Cloudera: Warum eine Datenstrategie eine gute Idee ist. Daten nehmen in unserem Leben eine entscheidende Rolle ein. Von der Nutzung einer App bis hin zum Einkauf im Internet ist die Speicherung und Analyse von Daten…
Business Mann mit Boxhandschuhen

Anbieter im Vergleich: Integrierte Planung und Business Intelligence

Der BARC Score Integrated Planning & Analytics (IP&A) bewertet zum sechsten Mal marktführende Softwareanbieter für integrierte Planung und Business Intelligence (BI). Der BARC Score Financial Performance Management (FPM) erscheint zum vierten Mal, dieses Jahr…
Datenanalyse

Warum ist Datenintegration für die datengesteuerte Weiterentwicklung wichtig?

Heutzutage entsteht in jedem Unternehmen eine riesige Menge an Daten im Vertrieb, in der Produktion, im Kundenfeedback, Marketing usw. Doch ohne gründliche Analyse und Verteilung können diese zu einem unübersichtlichen Wust werden, der nicht zu entwirren ist.…

Anzeige

Jetzt die smarten News aus der IT-Welt abonnieren! 💌

Mit Klick auf den Button "Zum Newsletter anmelden" stimme ich der Datenschutzerklärung zu.