Anzeige

KI

Die Nutzung Künstlicher Intelligenz für Kundenkommunikation und -services wächst rasant. Das wirft Fragen nach der Verantwortung von Unternehmen für den fairen, diskriminierungsfreien Umgang damit auf. Pegasystems benennt die fünf wichtigsten Schritte bei der Entwicklung sozial gerechter, diskriminierungsfreier KI-Modelle.

Künstliche Intelligenz (KI) kann den Kern gesellschaftlicher Konflikte und Ungerechtigkeiten nicht verschwinden lassen. Aber sie kann dazu beitragen, Diskriminierungen zu vermeiden und gesellschaftlichen Werten wie Vielfalt, Inklusion oder Geschlechtergerechtigkeit mehr Gewicht zu verleihen. KI ist für Unternehmen ein wertvolles Werkzeug, entsprechende Compliance- und Governance-Vorgaben in der täglichen Praxis umzusetzen. Pegasystems, führender Anbieter von strategischen Software-Lösungen für Vertrieb, Marketing, Service und Operations, hat die fünf wichtigsten Punkte identifiziert, die bei der Umsetzung sozial gerechter KI- und Machine-Learning-Modelle zu beachten sind.

  1. Klare Zielvorgaben: Bei der Entwicklung eines KI-Modells müssen die Ziele widerspruchsfrei, eindeutig, kurz und verständlich formuliert werden. Alle Beteiligten bewegen sich dabei im Spannungsfeld von natürlicher und mathematischer Sprache. In einer optimalen Arbeitsteilung fungiert der Data Scientist dabei als Bindeglied zwischen den Businessfunktionen und der Softwareentwicklung. Er kümmert sich um die KI-Modellierung und Algorithmen, während sich das Business auf die Vorgaben und der Entwickler auf die Software konzentrieren können.
  2. Die richtige Datenbasis: Eine große und repräsentative Datenbasis ist eine wichtige Voraussetzung für die Genauigkeit des Modells. Je mehr und bessere Daten vorliegen, desto zielgenauer kann das KI-Modell trainiert werden. Dabei muss stets ein Kompromiss zwischen der angestrebten Genauigkeit und den Kosten und Möglichkeiten bei der Trainingsdatenbeschaffung getroffen werden. Einen zumindest teilweisen Ausweg aus diesem Konflikt bieten lernende Algorithmen, die es erlauben, auf Basis von sukzessiv eingehenden Echtzeitdaten zu trainieren.
  3. Die geeignete Abstraktionsebene: KI-Modelle nutzen auf Statistik basierende Algorithmen, um Aussagen tätigen zu können. Wenn die Verteilung der Merkmale in der Stichprobe, also zum Beispiel in den Trainingsdaten, nicht der wahren Verteilung der Merkmale in der Grundgesamtheit, also dem Nutzungskontext, entspricht, liegt eine Verzerrung vor. Das Modell muss stärker abstrahieren, die Repräsentativität der Aussage ist dadurch einschränkt und die Zielvorgaben können nur bedingt erfüllt werden.
  4. Die Gewichtung von Merkmalen: Bei der operativen Umsetzung von Vorgaben wie etwa dem Entgelttransparenzgesetz oder gerechteren Geschlechteranteilen im Recruiting sind viele Faktoren zu gewichten. Will man beispielsweise im HR-Prozess die Abschlussnoten einer amerikanischen Bewerberin und eines finnischen Bewerbers fair bewerten, müssten sie vergleichbar sein. Wenn die entsprechenden Daten dafür aber nicht oder nur eingeschränkt vorliegen, muss der Algorithmus abstrahieren, was zu Einbußen bei der Qualität und Eignung des Modells und damit letztlich auch bei der Fairness im Einzelfall führt.
  5. Der Einfluss selbstverstärkender Prozesse: Die Vorschlagsquote weiblicher Künstlerinnen (1) liegt auf Streaming-Portalen bei rund 25 Prozent. Diese geringe Präsenz führt dazu, dass sie weiter niedrig bleibt. Solche selbstverstärkenden Prozesse sind aus der KI als Überanpassung bekannt. Data Scientists können durch Analyse der verwendeten Modelle und Daten die Überanpassung erkennen und sie durch geeignete Maßnahmen wie Komplexitätsreduzierung der Modelle oder Anpassung der Merkmaleoptimierung minimieren. Voraussetzung dafür ist die Formulierung einer entsprechenden Zielvorgabe.

„Existierende KI-Modelle können Defizite aufzeigen und helfen, gesellschaftlich gewünschte Lösungen zu ihrer Beseitigung umzusetzen“, erklärt Florian Lauck-Wunderlich, Project Delivery Leader bei Pegasystems. „Für die Lösung von komplexen Problemen, bei denen unterschiedliche Ziele abgeglichen und gedankliche Transfers zu anderen Modellen und Ansätzen gezogen werden müssen, brauchen wir jedoch eine starke KI, an der gerade intensiv geforscht und entwickelt wird.“

Florian Lauck-Wunderlich, Project Delivery Leader
Florian Lauck-Wunderlich
Project Delivery Leader, Pegasystems

Weitere Artikel

Smartphone

Mediennutzung: Online-Banking, Podcasts und Apple Watch im Aufwind

And the winner is …. Podcast! Nachdem im Corona-Jahr 2020 vor allem Video-on-Demand-Angebote starke Zugewinne verzeichnen konnten, geht in diesem Jahr der Pokal für den stärksten Nutzungsanstieg an die digitalen Audio-Inhalte. Aber auch das Online-Banking…
Gesundheitswesen Digitalisierung

Effizientere Arbeitsabläufe: Krankenhäuser planen größere Investitionen

Zebra Technologies Corporation stellte die Ergebnisse seiner neuesten internationalen Studie und den Report "Smarter, More Connected Hospitals" zu aktuellen Entwicklungen im Gesundheitswesen vor. Die Studie zeigt, dass moderne Technologielösungen im…
Internetverbindung

Unesco: Deutschland sollte schnelles Internet für alle schaffen

«Wie steht es um das Internet in Deutschland?» Bei der Antwort auf diese Frage verteilt Weltkulturorganisation Unesco durchweg gute Noten. Sie sieht aber erhebliche Unterschiede bei der Versorgung unterschiedlicher Bevölkerungsgruppen.
Finanzdienstleister Digital

So scheitert die Digitalisierung von Banken ganz sicher

Die meisten Banken treiben ihre digitale Transformation mit Nachdruck voran, doch dabei kann viel schiefgehen. Pegasystems nennt typische Fehleinschätzungen, denen Banken bei ihren Digitalisierungsbemühungen aufsitzen.

Anzeige

Jetzt die smarten News aus der IT-Welt abonnieren! 💌

Mit Klick auf den Button "Zum Newsletter anmelden" stimme ich der Datenschutzerklärung zu.