IT-Sicherheit in Produktion und Technik
12.09.17 - 13.09.17
In Berlin

Be CIO: IT Management im digitalen Wandel
13.09.17 - 13.09.17
In Köln

IBC 2017
14.09.17 - 18.09.17
In Amsterdam

Orbit IT-Forum: Auf dem Weg zum Arbeitsplatz der Zukunft
27.09.17 - 27.09.17
In Leverkusen

it-sa 2017
10.10.17 - 12.10.17
In Nürnberg

Intelligentie TechnologieLässt sich mit Machine Learning der Sieger der Fußball-EM vorhersagen? Selbstlernende Systeme werden derzeit in vielen Bereichen erprobt. Eines der spannendsten Themen: Die Aufdeckung von Cyberangriffen.

RadarServices ist in der Erforschung des Themas in Europa führend, gibt einen Einblick in den aktuellen Forschungsstand und beantwortet auch die spannende Frage zur Fußball-EM.

Über Machine Learning

Machine Learning wendet Algorithmen an, um Muster oder Beziehungen in bestehenden Daten zu erkennen. Zugrunde liegen verschiedene statistische Methoden, unter anderem die klassische Inferenzstatistik, Bayesche Modelle oder Clustering. Auf dieser Basis werden von den als 'selbstlernend' oder auch als 'verhaltensbasiert' bezeichneten Systemen automatisiert Schlüsse gezogen, Wahrscheinlichkeiten für verschiedene Szenarien berechnet und Vorhersagen getroffen.

Anwendungsbeispiele

Machine Learning ist für all jene Bereiche interessant, in denen große Datenmengen gesammelt und analysiert werden: IT-Security, E-Commerce, Versicherungen, Tourismus, Börsenhandel oder Gesundheit sind nur einige Beispiele. Algorithmen lassen sich dabei unterschiedlich anwenden: Für die Personalisierung von Inhalten, für Kaufempfehlungen, Prognosen oder auch die Betrugserkennung bei Transaktionen.

Die Bedeutung für die IT-Sicherheit

Verhaltensbasierte Systeme werden zum Aufdecken von Cyberangriffen in der IT-Infrastruktur von Unternehmen und öffentlichen Institutionen eingesetzt. „Herkömmliche IT-Sicherheitswerkzeuge sind üblicherweise regel- bzw. signaturbasiert. Das heißt, dass sie zum Beispiel Schadsoftware nur dann erkennen, wenn ihnen vorab exakte Informationen über deren Eigenschaften zur Verfügung standen. Bei geringsten Abweichungen von diesen Vorgaben werden die Werkzeuge überlistet und sind wirkungslos. Angreifer konzentrieren sich genau darauf: Sie finden und nutzen neuartige Schwachstellen in der Infrastruktur eines Unternehmens aus oder setzen bisher unbekannte Schadsoftware ein. Heute braucht es hochausgebildete Spezialisten, um solche Angriffe zu erkennen. Erst Machine Learning kann die menschliche Analysefähigkeit mit ihren logischen Schlussfolgerungen ersetzen.“ erklärt Harald Reisinger, Geschäftsführer und verantwortlich für den Bereich Forschung bei RadarServices.

Ein Beispiel aus der IT-Sicherheitspraxis

Aus einem Firmennetzwerk werden Daten gestohlen, im Fachjargon wird dieser Vorgang „Data Exfiltration“ genannt. Ein signaturbasiertes System erkennt möglicherweise ein bestimmtes URL-Muster für Uploads zu einer potentiell gefährlichen Webseite oder es identifiziert eine bereits bekannte Schadsoftware. Geübte Angreifer können dies aber leicht umgehen. Verhaltensbasierte Systeme erkennen hingegen, dass gerade ein Dateiupload stattfindet. Zusätzlich sind sie in der Lage zu melden, wenn dies von einem Rechner aus geschieht, der selten Dateiuploads ausführt oder wenn die Zieladresse unüblich ist. Einem Angreifer wird es sehr schwer fallen, das zentrale Ziel seines Angriffs, den Dateiupload, zu verschleiern.

Der Status Quo der Forschung und Anwendung im Bereich IT-Sicherheit

Machine Learning wurde in der Forschung zwar erstmals 1999 erwähnt, war aber in der Praxis aufgrund der immens langen Rechenzeit und den dafür notwendigen, hochleistungsfähigen Prozessoren über Jahre hinweg kaum angekommen. Heute sind die technischen Voraussetzungen vorhanden und das Thema ist eines der vielversprechendsten Ansatzpunkte, um Arbeitsschritte, die derzeit IT-Sicherheitsexperten „manuell“ ausführen, zu automatisieren.

Der Erfolg in der Anwendung hängt dabei sehr stark von der Qualität der Datenbasis ab. Das ist nicht speziell ein Problem für den Bereich IT-Sicherheit, sondern ein generelles statistisches Problem. Während Ereignisse mit sehr hoher Signifikanz automatisiert leicht zu erkennen sind, besteht die Kunst darin, automatisiert Ereignisse mit niedriger Signifikanz in „für die IT-Sicherheit wichtiges“ und „unwichtiges“ zu unterscheiden. Dafür hat sich in der Praxis noch kein Modell durchgesetzt.

Machine Learning bei RadarServices

RadarServices setzt bereits heute neben signaturbasierten auch verhaltensbasierte Systeme zur Erkennung von Cyberangriffen ein. Die Fähigkeiten dieser Systeme gehen auf die intensive Forschung des Unternehmens zurück.

Der aktuelle Fokus der Forschung liegt einerseits auf der Erstellung von detaillierten „Verhaltens-Fingerabdrücken“, die von Angreifern stammen könnten und von Rechnern mit auffälligen Vorgängen genommen werden. Reichert man die Informationen aus diesen Fingerabdrücken mit Erkenntnissen aus anderen Datenquellen wie signaturbasierten Systemen an, erhält man qualitativ sehr hochwertige Daten über Auffälligkeiten in einem Unternehmensnetzwerk. Mit ihnen wird die automatisierte Beurteilung der Relevanz eines Ereignisses im Unternehmensnetzwerk als tatsächlicher Sicherheitsvorfall möglich.

Andererseits untersucht das Forschungsteam laufend Technologien aus anderen Branchen und Geschäftsfeldern wie der Ökonometrie oder der Bioinformatik. Die eingangs gestellte Frage nach der Möglichkeit der Vorhersage des Fußball-EM-Siegers wird also auch vom Forschungsteam von RadarServices verfolgt. Dazu Harald Reisinger: „Fußballspieler treffen auf dem Platz spontane Entscheidungen, die nicht simulierbar sind. Die Fachsprache nennt solche Konstellationen „chaotische Systeme“. Machine Learning kann – zumindest nach dem derzeitigen Forschungsstand – daraus keine Schlüsse ziehen. Deshalb können wir auch leider keinen Sieger der Fußball-EM vorhersagen. Wir sehen Deutschland vorne, aber das ist der persönliche Favorit unseres Forschungsteams, nicht der unserer Systeme.“

www.radarservices.com

Frische IT-News gefällig?
IT Newsletter Hier bestellen:

Newsletter IT-Management
Strategien verfeinert mit profunden Beiträgen und frischen Analysen

Newsletter IT-Security
Pikante Fachartikel gewürzt mit Shortnews in Whitepaper-Bouquet