Erstes Vorgehensmodell für KI-Engineering veröffentlicht
Projekte, in denen Künstliche Intelligenz (KI) ein- oder umgesetzt werden soll, sind meist komplex, erfordern heterogene Teams und bergen ein hohes Risiko zu scheitern. Wie schafft man es als Unternehmen, KI-Projekte auch in anspruchsvollen Anwendungsdomänen wie Mobilität oder industrieller Produktion dennoch zum Erfolg zu führen?