VERANSTALTUNGEN

ERP Tage Aachen
19.06.18 - 21.06.18
In Aachen

next IT Con
25.06.18 - 25.06.18
In Nürnberg

XaaS Evolution 2018
01.07.18 - 03.07.18
In H4 Hotel Berlin Alexanderplatz

IT kessel.18
11.07.18 - 11.07.18
In Reithaus Ludwigsburg

2. Jahrestagung Cyber Security Berlin
11.09.18 - 12.09.18
In Berlin

KI Erde Profil 584819977 500

Umwälzende Innovationen und Technologien, sowie die digitale Transformation in den Unternehmen haben den Weg geebnet, ohne zu wissen, wie Produkte aus dem „Cognitive Learning“ und „Machine Learning“ einhergehen mit innovativen Lösungen wie „Internet-of-Things“ und neuen Cloud- und Storage Produkten. 

Der Verbrauchermarkt und die IT-Trends zeigen klar, dass intelligente Produkte vermehrt auf den Markt kommen. Große Industrielösungen sind Vorreiter mit kognitiven Services, die unseren Alltag bei einfachen Aufgaben unterstützen können. Was ist aber mit Enterprise Systemen? Ist auch hier eine Steigerung der Arbeitseffizienz möglich?

Aus einem Forbes Artikel geht hervor, dass die Einführung von KI von insgesamt elf identifizierten Hindernissen gebremst wird. Die zwei größten sind: nicht definierte Geschäftsfälle und fehlendes Verständnis, wofür KI im Businesskontext sinnvoll eingesetzt werden kann. Und der aktuelle „World Quality Report“ zeigt uns, dass viele Organisationen mit denselben wachsenden Herausforderungen in der Qualitätssicherung kämpfen. Es wird nicht reichen, wie bisher zu testen und dabei zu erwarten, den neu entstandenen Herausforderungen, standhalten zu können.

Neue Herausforderungen in der Qualitätssicherung

Eine der neuen Herausforderungen im Testmanagement ist das Nutzen von vorhandenen Daten für eine fundierte Entscheidungsfindung. Systemdaten wie Server Logs oder Daten aus den Entwickler-Teams werden bereits seit Jahren auf einer Reihe von Middleware- und Backend-Systemen verteilt gespeichert, wobei ein Zugriff für Testmanager und QS-Spezialisten meist nicht möglich ist. Die Herausforderung besteht jetzt darin, KI-Systemen zu zeigen, wie derart große Mengen an unstrukturierten Daten sinnvoll verarbeitet werden können.

Die Einbindung intelligenter, selbstlernender und analytischer Technologien versetzt uns in die Lage, gesammelte Daten effizient einzusetzen. Basierend auf Projektdaten und tatsächlichen Nutzungsmustern erschaffen wir eine intelligente Entscheidungsfindung. Wir bieten unseren Kunden durch Nutzung kognitiver Qualitätssicherung die Möglichkeit, den hohen Qualitätsstandard mit optimierten Kosten aufrecht zu erhalten und das in einer komplex-vernetzten Welt.

Möglicher Lösungsansatz

Wir konnten die Effizienz unseres Ansatzes bestätigen. Durch mehrere, erfolgreiche „Proofs of Values“ bei Kunden aus unterschiedlichen Branchen, wie z. B. Dell EMC, die das Potenzial der kognitiven Qualitätssicherung erkannt haben und erfolgreich einsetzen. Speziell für Kunden oder Produkte mit einer hohen Anzahl an Testfällen oder sehr kritischen Aspekten führt dies zu erheblichen Kosteneinsparungen. Aber vor allem ist die Risikoreduzierung, dank der Empfehlungen aus der Virtualisierung, von großem Vorteil. Der Testmanager bekommt damit Daten zur Verfügung gestellt, die zuvor undenkbar waren.

Das Kognitive QS-System wird mit ausgewählten Datenquellen aus klassischen Test-, Entwicklungs-, und Betriebsbereichen verbunden wie z.B. HPE ALM, MS TFS, Jira oder ähnliches. Daten aus diesen Quellen werden gruppiert und um weitere Interaktionsdaten wie E-Mail oder Chat-Protokolle, Fehlermeldungen oder Kommentare ergänzt. Beschreibende Daten erhalten wir aus dem Source-Code und Testfall- Metadaten sowie Fehler- oder Codequalitätseigenschaften.

Das Daten- und Test-Reglement, nach denen das System arbeitet, spielt die entscheidende Rolle. Keine Einführung von „Cognitive QA“ ist wie die andere, in unserem „Proof of Value“ erhalten wir nach neun Wochen die ersten Ergebnisse. In der ersten Woche wird untersucht, ob die Systeme des Kunden bereit für Analytics sind. In Woche zwei bis drei analysieren wir die Daten und deren Qualität, doppelte Daten oder fehlende Daten werden entsprechend korrigiert. Die vierte und fünfte Woche ist zum Modellieren von kognitiven QS-Regeln geplant, Woche sechs bis acht wird ein Benchmarking durchgeführt und Qualitätsmetriken angewendet. In der neunten und letzten Woche werden die Datenbestände und Erkenntnisse zu einem vollständig operativen Ansatz zusammengeführt.

Zukunftsfähige IT

Die Analyseergebnisse des Kognitiven QS-Systems werden in Form von Diagrammen in einer Weboberfläche bereitgestellt. Neben der Vorhersage der erwarteten Qualität oder den Problembereichen empfiehlt das System automatisch, welche Testfälle oder Systeme besonders intensiv oder sorgfältig getestet werden sollten, bevor das „System unter Test“ in Betrieb genommen wird. Mit jeder Iteration werden Daten generiert, die automatisch in Echtzeit in die Analyse einfließen. „Cognitive QA“ von Sogeti ist ein selbstlernendes System, das basierend auf Feedback immer genauere Ergebnisse liefert und eine enorme Unterstützung bietet, jedoch keinen Testmanager ersetzt. Machen Sie Ihre IT zukunftsfähig!

Autoren: Roman Kölln, Senior Consultant & Project Sales und Piotr Romaniuk, Portfolio & Innovation Manager, Sogeti Deutschland GmbH

 

GRID LIST
Tb W190 H80 Crop Int 9cc0f78c8e26d024ae4e442e61f01e6b

ALM Software objectiF RPM erscheint in Version 4.3

MicroTOOL GmbH veröffentlicht die Version 4.3 von objectiF RPM, einer Software für das…
Tb W190 H80 Crop Int A6d123785255a923989fd0bca72d7744

Neue Version der ISMS-Software INDITOR ISO in den Startlöchern

Die neuen Features der ISMS-Software INDITOR ISO, von Contechnet, liefern ein…
Tb W190 H80 Crop Int A799384e8f64b5f22b4b21cf90c436ab

Business Intelligence Software - ab welcher Unternehmensgröße wichtig?

Kaum ein Unternehmen hat heute noch die Möglichkeit, sich auf lange Reaktionszeiten zu…
Tb W190 H80 Crop Int 2d1f2dc7edd2b7193895396bbfc10ab3

DevOps nutzen und Anwendungen aufrechterhalten

Die Herausforderung bei DevOps-orientierten IT-Betriebsmodellen besteht darin, dass sie…
Tb W190 H80 Crop Int E6eb987ac8d57cbea98537b512f5c035

Warum Open Source wichtig für Collaboration-Lösungen ist

Open Source – Software, deren Quellcode öffentlich ist, verändert und geteilt werden kann…
API

14 Tipps zur Absicherung von APIs

APIs (Application Programming Interfaces) sind ein zweischneidiges Schwert für moderne…
Smarte News aus der IT-Welt

IT Newsletter


Hier unsere Newsletter bestellen:

 IT-Management

 IT-Security