Anzeige

Business Intelligence

Nie verfügten Organisationen über mehr Informationen und Datenquellen als heute. Die Rolle der Data Scientists, die aus den vorliegenden Daten wertvolle Erkenntnisse gewinnen, ist zentral für die Wettbewerbsfähigkeit von Unternehmen. Smarte Business-Intelligence-Lösungen unterstützen deren Arbeit, stiften so konkrete Mehrwerte für das Unternehmen und erzielen so i.d.R. einen nachweislichen ROI. 

Viele Unternehmen erkennen die Vorteile und beginnen daher, ihre Business-Intelligence-Lösungen zu modernisieren. Durch den Rückgriff auf Cloud-Technologien und Künstliche Intelligenz können Datenanalysen heute weiter optimiert und automatisiert werden. Im Rahmen dieses Prozesses gibt es allerdings auch einige Herausforderungen. Otto Neuer, Regional VP Sales bei Denodo, erklärt die Vorzüge einer modernisierten Business Intelligence und worauf Unternehmen bei der Implementierung achten sollten.

Business Intelligence (BI) umfasst schon längst nicht mehr nur eine singuläre Software oder Technologie. Vielmehr handelt es sich um ein Set aus vielfältigen, innovativen Tools und Konzepten. Durch diese werden bestimmte Prozesse in alle Abteilungen eines Unternehmens integriert. Zentrale Treiber dieser Veränderung sind die steigende Quantität der verfügbaren Daten, Künstliche Intelligenz (KI), Cloud-Technologien und Augmented Analytics, welche eine Erweiterung der BI durch KI- und Natural Language Processing (NLP)-Fähigkeiten beschreibt. Die Einsatzmöglichkeiten der neuen Technologien sind vielseitig und zielen darauf ab, alle Phasen des Workflows von Data Scientists zu effektiver zu gestalten: Von der Datenvorbereitung über die Datenmodellierung bis zur Verwertung der Ergebnisse. Bei der Modernisierung der BI durch die neuen Technologien sollten zahlreiche Aspekte bedacht werden.

Zentraler Zugriffspunkt für Cloud- und On-Premise-Daten

Vielen Unternehmen ist es noch nicht gelungen, den Datenkonsumenten einen zentralen Zugriffspunkt für alle Daten – die etwa in diversen Clouds oder on-premise liegen – zur Verfügung zu stellen. Dies führt zu einem ineffizienten Gesamtsystem mit hohem Management-Aufwand und Security-Risiken. Nutzer, wie etwa die Data Scientists, verbringen einen Großteil Ihrer Zeit mit dem individuellen Auffinden und Organisieren von Daten. Wertvolle Zeit für die gewinnstiftende Analyse von Daten geht verloren.

Eine Lösung dieses Problems besteht in der logischen Datenintegration mit Datenvirtualisierung. Diese Technologie stellt die Infrastruktur bereit, auch hybride Umgebungen zu integrieren und den Datenkonsumenten einen gemanagten und effizienten Datenzugriff zu ermöglichen. Data Scientists können dadurch sowohl von On-Premise-Systemen als auch von Clouds auf die benötigten Daten zugreifen. Dieser neue zentrale Zugriffspunkt sorgt für einen verbesserten Workflow.

Exponentielles Datenwachstum erfordert Echtzeitanalysen

Auch das stetig steigende Volumen an Daten führt zu zusätzlichen Arbeitsprozessen für Data Scientists. Neben der hohen Geschwindigkeit, in der Daten heute entstehen, stellen auch die heterogenen und unstrukturierten Bezugsquellen eine Herausforderung dar. Diese Entwicklungen erfordern zunehmend agile Methoden in der Datenorganisation.

In den meisten Unternehmen liegen derzeit jedoch veraltete Infrastrukturen vor, die keinen Echtzeitzugriff ermöglichen. Analysten sind daher darauf angewiesen, alle Daten zunächst zu replizieren und in einem separaten Repository zu aggregieren. Erst nach diesem Prozess können sie eine Analyse durchführen. Neben dem großen Zeitaufwand verbergen sich hier noch weitere Gefahren: Zum einen führt der Prozess zu erhöhten Latenzen und Kontextverlust. Zum anderen sind die replizierten Daten nie vollständig synchron mit dem Original. Diese Zeitverzögerung resultiert in verzerrten Analysen und einer Dateninkonsistenz.

Um diese negativen Effekte zu umgehen, können Unternehmen auch hier auf Datenvirtualisierung zurückgreifen. Zunächst einmal bietet sich so die Möglichkeit, alle integrierten Daten in einem ganzheitlichen Überblick darzustellen, ohne dass Replikationen notwendig sind. Außerdem können Data Scientists die Daten über einen sogenannten Access Layer aufrufen, der als Intermediär dient. So können sie auf die Daten zugreifen, welche dabei von allen Anwendungen und Hintergrundprozessen entkoppelt sind. 

Moderne Infrastruktur für heterogene Datenquellen

Neben der bloßen Datenmenge stellt auch die Art der Daten und ihrer Quellen eine neue Herausforderung für Unternehmen dar. Durch den Einsatz von wachsenden Cloud-Umgebungen und vielfältigen Technologien können Data Scientists auf zahlreiche Datenquellen zurückgreifen. Die Beschaffenheit dieser ist vielfältig – strukturiert oder unstrukturiert, relational oder nicht-relational, On Premise oder in der Cloud. Sie bieten Unternehmen die Möglichkeit umfassende Informationen über neue Märkte, aber auch Kunden oder Geschäftsprozesse zu sammeln.

Die zurzeit etablierten ETL-Prozesse stoßen hier genauso an ihre Grenzen wie physische Data Warehouses. Diese Prozesse sind zeit- und ressourcenintensiv und wirken sich restriktiv auf die Datenintegration aus. Auch Data Adapter oder Connectors weisen gravierende Schwächen bei der Implementation auf. Hier werden Punkt-zu-Punkt Verbindungen implementiert, die zu einer gesteigerten Komplexität führen. Dies führt wiederrum zu einer erhöhten Fehleranfälligkeit.

Die Lösung: Neuartige BI-Tools. Hierfür benötigen Unternehmen eine zeitgemäße Infrastruktur, die eine Konnektivität mit den unterschiedlichen Datenquellen ermöglicht. Diese bieten Unternehmen in Zukunft die Möglichkeit, einfach auf heterogene Datenquellen in Echtzeit zurückzugreifen. Auch hier kann schließlich Datenvirtualisierung eine Möglichkeit darstellen, den Prozess zu unterstützen. So können Nutzer eine virtuelle Overlay-Schicht schaffen, die den Zugriff auf Datenbestände unabhängig von Ablageort und Format ermöglicht.

Die neue Phase der BI: Automatisierung und Virtualisierung für optimierte Prozesse

Im Fokus von den neuartigen BI-Lösungen stehen immer Daten und deren Mehrwert. Deren Analyse wiederum bringt dem gesamten Unternehmen zahlreiche Vorteile. Gleichzeitig wird oft angeführt, dass Data Scientists nur 20 Prozent ihrer Zeit mit der eigentlichen Analyse der Daten verbringen. Die restlichen 80 Prozent fallen auf die Suche und Vorbereitung der zugrundeliegenden Daten. BI-Lösungen können hier zu einem effizienteren Prozess führen und die Data Scientists gleichzeitig durch Datenvirtualisierungen in jeder Phase ihrer Arbeit unterstützen. Hierbei werden die sonst durch manuelle Arbeitsschritte gekennzeichneten Prozesse durch eine Verknüpfung von ML- und NLP-Lösungen automatisiert. Diese neuen BI-Lösungen stellen somit die nächste Phase in der Evolution der BI dar: Sie nutzen KI, um für die Nutzer Erkenntnisse zur Verfügung zu stellen, die sowohl auf menschlichen als auch technologischen Analysen basieren. So entstehen neuartige, aussagekräftige und relevante Erkenntnisse, die einen wertvollen Beitrag zur Weiterentwicklung und Wettbewerbsfähigkeit von Organisationen leisten.

 

Otto Neuer, Regional VP Sales DACH
Otto Neuer
Regional VP Sales DACH, Denodo Technologies

Newsletter Anmeldung

Smarte News aus der IT-Welt

Sie möchten wöchentlich über die aktuellen Fachartikel auf it-daily.net informiert werden? Dann abonnieren Sie jetzt den Newsletter!

Newsletter eBook

Exklusiv für Sie

Als Newsletter-Abonnent erhalten Sie das Booklet „Social Engineering: High Noon“ mit zahlreichen Illustrationen exklusiv und kostenlos als PDF!

 

Artikel zu diesem Thema

Cloud Computing
Jul 06, 2020

Mit der Multicloud IT-Services mittel- und langfristig aufsetzen

Die aktuelle Situation hat Unternehmen in vielerlei Hinsicht gefordert: Eine…
KI-Handschlag
Jul 03, 2020

Künstliche Intelligenz ist in Deutschland angekommen

p.p1 p.p2 Künstliche Intelligenz (KI) gilt als Schlüsseltechnologie, deren…
Big Data und KI
Jun 05, 2020

Business Intelligence gehört der Vergangenheit an

Wir leben heute in einer offenen globalen Weltwirtschaft, was bedeutet, dass auch…

Weitere Artikel

Data Analytics

So entwickeln Unternehmen eine erfolgreiche Datenstrategie

Der Online-Streaming-Gigant Netflix – der weltweit über 150 Millionen zahlender Abonnenten in mehr als 190 Ländern hat – sammelt Daten von seinen Nutzern. Um das Kundenverhalten und Kaufmuster der Film-Fans zu verstehen, setzt das Unternehmen auf moderne…
Analyse

Wachsende Nachfrage für Enterprise Knowledge Graphen

Der Markt für Knowledge Graphen wächst in rasantem Tempo. Das verdeutlicht die aktuelle Umfrage „Technology Executive Priorities for Knowledge Graphs“. Die Umfrage wirft einen Blick auf den Einsatz von Knowledge Graphen in Unternehmen, die zentralen…
Analyse

IT-Strategie in unsicheren Zeiten – was bringt die zweite Jahreshälfte?

Unternehmen stehen vor einer herausfordernden zweiten Jahreshälfte. Im günstigsten Fall ist eine gewisse Erholung der lokalen und globalen Wirtschaft zu erwarten, aber es wird weder zügig noch einfach ablaufen. Die IT bildet in dieser Hinsicht keine Ausnahme.
Daten

Datenqualität: Mit sauberen Daten digital durchstarten

Die Wirtschaft im deutschsprachigen Raum blickt wieder optimistischer in die Zukunft: Im Mai wie im Juni verzeichnete der Ifo-Geschäftsklimaindex ein deutliches Plus. Was brauchen Unternehmen, um jetzt richtig Gas zu geben? Gute Daten sorgen für einen…

Anzeige

Newsletter Anmeldung

Smarte News aus der IT-Welt

Sie möchten wöchentlich über die aktuellen Fachartikel auf it-daily.net informiert werden? Dann abonnieren Sie jetzt den Newsletter!

Newsletter eBook

Exklusiv für Sie

Als Newsletter-Abonnent erhalten Sie das Booklet „Social Engineering: High Noon“ mit zahlreichen Illustrationen exklusiv und kostenlos als PDF!