PM Forum 2017
24.10.17 - 25.10.17
In Nürnberg

PM Forum 2017
24.10.17 - 25.10.17
In Nürnberg

10. gfo-Jahreskongress
25.10.17 - 26.10.17
In Düsseldorf

Google Analytics Summit 2017
09.11.17 - 09.11.17
In Hamburg

Data Driven Business 2017
13.11.17 - 14.11.17
In Berlin

Vorausschauend Unternehmen setzen heutzutage Business Intelligence Systeme ein,um aus Daten entscheidungsrelevante Information zu gewinnen. Doch solche System stellen dem Management vergangenheitsorientierte Daten bereit. Diese werden oft einem zentralen Data Warehouse entnommen und sind nicht aktuell, denn sie haben vergleichsweise lange Latenzzeiten von wenigen Tagen bis zu einem Monat. Feingranulare Datenanalysen sind damit nicht möglich, da die Daten aggregiert bereitstehen. 

Um sich in der schnelllebigen, datenorientierten Wirtschaftswelt behaupten zu können, sind Organisationen auf möglichst aktuelle, feinkörnige Daten angewiesen. Sie benötigen Systeme, die Daten in Echtzeit auswerten, um Entwicklungen vorauszusagen und dem Management genügend Handlungsspielraum zu bieten. Da herkömmliche Verfahren große Datenmengen kaum effizient verwalten und analysieren können, kam das mittlerweile etablierte Paradigma Big Data auf. Zur schieren Datenmenge ist nun die Herausforderung der konti- nuierlichen Datenströme dazugekommen: Sensoren, Geldautomaten, Online Shops und andere sammeln hochfrequente Datenströme dezentral und rund um die Uhr. Alle Bereiche unserer Gesellschaft sind davon betroffen: Finanzsektor, Überwachung und Strafverfolgung, industrielle Produktion sowie das Verkehrswesen.  Diesen Bereichen geht es darum, die Daten in Echtzeit zu sammeln, zu bearbeiten und zu analysieren, um daraus Prognosen zu erstellen sowie Muster und Ausreißer zu identifizieren.

Streaming Analytics

Streaming Analytics hat das Ziel, Datenströme in Echtzeit zu bearbeiten und auszuwerten. Doch große Datenvolumina und hochfrequente Datenströme schließen den Einsatz von Data Warehouses aus, da letztere Daten in zeitauf- wendigen Verfahren zentral sammeln, speichern, bearbeiten und auswerten. Datenströme werden heutzutage dezentral erfasst, daher ist eine Bearbeitung und Analyse in Echtzeit nur auf dezentraler, verteilter Basis per Distributed und Parallel Computing denkbar. Zu den bekanntesten Streaming Analytics Anwendungen gehören:

  • Mikrosegmentierung in Echtzeit, um maßgeschneiderte Angebote zu erstellen
  • Empfehlungssysteme, um potentielle Kunden auf weitere Produkte aufmerksam zu machen.
  • Churn Management, um die „Kundenabwanderung“ zu reduzieren.
  • Mustererkennung, um Kreditkartenbetrug oder Steuerhinterziehung aufzudecken.
  • Durchsuchen von Daten, um Abhängigkeiten zwischen Parametern zu entdecken.
  • Monitoring von komplexen Produkten, wie Transportmitteln und Anlagen, um bei Problemen rechtzeitig zu intervenieren – beispielsweise durch die vorbeugende Bereitstellung von Ersatzteilen.

Streaming-Analytics-Systeme müssen Datenströme mit hohen Durchlaufgeschwindigkeiten schnell und zuverlässig bearbeiten. Anwendungen mit mehreren Millionen Transaktionen pro Sekunde sind beispielsweise im Finanzhandel gang und gäbe. Die gesammelten Daten sind nicht nur hochfrequent, sondern manchmal zudem heterogen und unstrukturiert, zum Beispiel die von Sensoren gesammelten Audio- und Video-Signale. Mit Verfahren der Signalverarbeitung, wie Filtern und Glätten, werden die Daten be- reinigt und angeglichen, um störende Faktoren wie Rauschen und Übertragungsfehler zu eliminieren. Abschließend folgt die analytische Auswertung mithilfe von Statistik oder Data Mining.

Die analytischen Verfahren sollen minimale Anforderungen an Geschwindigkeit etwa mithilfe verteilter, paralleler Bearbeitung) und Genauigkeit erfüllen. Dazu ist ein Kompromiss zwischen Geschwindigkeit und Genauigkeit notwendig. Um ihre Genauigkeit einzuhalten sollten sie sich automatisiert an veränderte Rahmenbedingungen anpassen. Das Paradigma des Streaming Analytics lässt sich ohne Einschränkungen auch bei Big Data anwenden und integriert folgende Disziplinen:

  • verteilte Datenhaltung und -verarbeitung
  • Signalverarbeitung sowie
  • Statistik und Data Mining

Multiple Modelle

Die mit Streaming Analytics zu lösenden Probleme sind oft komplex und lassen sich nicht immer durch ein einzelnes analytisches Modell lösen. Daher wählt man in der Praxis ein kombiniertes Vorgehen: anstelle eines einzigen Mo- dells werden mehrere parallel eingesetzt. Ein solches hybrides Modell löst Abweichungen und Widersprüche zwischen den Einzelergebnissen. Dabei kommen Methoden wie die folgenden zum Einsatz: 

  • Stimmenmehrheit bei einer Abstimmung und
  • gewichtete Mittelwerte

Unter hohem Zeitdruck ist es je-doch nicht immer möglich, mehrere Modelle parallel zu berechnen und zu konsolidieren. In solchen Fällen helfen Regeln, nach denen automatisch ein geeignetes Modell ausgewählt und ein einziges Ergebnis berechnet wird.

Kundensegmentierung

Die Kundensegmentierung gehört zu den zentralen Aufgaben des Marketings. Dort geht es darum, (potentielle) Kunden in Gruppen ähnlicher Eigenschaften zu klassifizieren. Die Klassifizierung ist jedoch oft ungenau, da sie manuell und unregelmäßig vorgenommen wird. Mithilfe von Streaming Analytics lassen sich nun in Echtzeit sowohl Kundensegmente bilden als auch Kunden vorhandenen Segmenten zuordnen. Damit lassen sich maßgeschneiderte Produktangebote in Echtzeit generieren. 

Empfehlungssysteme

Empfehlungssysteme basieren auf der Beobachtung, dass Individuen in der Regel wohlwollend auf Empfehlungen reagieren. Sie bauen auf der Erkenntnis auf, dass es teurer ist, einen neuen Kunden zu finden, als einem bestehenden etwas Zusätzliches zu verkaufen. Die zwei wichtigsten Kategorien von Empfehlungssystemen sind:

  • Inhaltsbasierte Empfehlungssysteme, die auf der Ähnlichkeit der Attribute von Artikeln wie Bücher oder Musikstücke beruhen. Ein bekanntes Beispiel ist der Internetradiodienst Pandora.com. Er klassifiziert Musikstücke aufgrund von rund 400 Attributen, die pro Musikstück erfasst werden. Zur Erarbeitung von Empfehlungen benutzt Pandora die erfassten Attributwerte. Für die Erfassung eines Musikstücks benötigen Spezialisten rund 20 Minuten. Im Moment umfasst die Pandora-Datenbank, die in der Literatur unter dem Begriff „Music Genome Project“ bekannt ist, rund 900‘000 Musikstücke von etwa 90‘000 Musikern.
  • Kollaborativ filternde Empfehlungssysteme sammeln und analysieren Daten anhand von Verhalten und Präferenzen der Benutzer, um auf der Basis von Ähnlichkeitsvergleichen Empfehlungen abzugeben. Soziale Netzwerke empfehlen „Freunde“ auf diese Weise.

Churn Management

Churn ist der Anteil an Kunden, die ein Unternehmen innerhalb einer bestimmten Periode verlassen. Die Minimierung des Churn ist eine große Herausforderung, zum Beispiel für Unternehmen aus dem Mobilfunkbereich. Dort verlassen Kunden die Unternehmen nach Ablauf einer minimalen Vertragsdauer. Doch auch andere Bereiche sind vom Churn stark betroffen: Bei Banken und Versicherungen schätzt man Raten zwischen 10 und 30 Prozent jährlich. Doch die Umsetzung des Churn Managements ist komplex, denn Kunden beenden Geschäftsbeziehungen aus vielfältigen Gründen. Diese reichen von Unzufriedenheit mit dem Produktangebot über das Ende eines Sonderangebots, bis hin zu allgemein ungünstiger Wirtschaftslage oder einem Umzug ins Ausland. Deshalb lässt sich Kunden- abwanderung nie völlig verhindern. Es gibt es eine Art „natürlichen“ Churn, der sich nicht vermeiden lässt. Zur rechtzeitigen Erkennung empfiehlt sich das Verfolgen von Frühwarnindikatoren. Mithilfe von Data-Mining- Algorithmen lassen sich die typischen Muster der schritt- weisen Kundenabwanderung frühzeitig erkennen und die Wechselwahrscheinlichkeit pro Kunde ermitteln. Abwan- derungsgefährdete“ Kunden überschreiten einen im Voraus bestimmten Schwellwert der Wechselwahrscheinlichkeit und sollen durch gezielte Maßnahmen an das Unternehmen gebunden werden.

Anomalienerkennung

Analytische Verfahren der Anomalienerkennung sind in der Lage, Abweichungen in Zeitreihen, die auf Fehler oder Betrug hinweisen, zu erkennen. Bekannte Anwendungsfälle sind die Vermeidung von Kreditkartenbetrug sowie die Untersuchung von Steuererklärungen auf Steuerhinterziehung. Bei Streaming-Analytics-Systemen zur Erkennung von Kreditkartenbetrug geht es darum, potenziell betrügerische Finanztransaktionen in Echtzeit zu erkennen. Solche Systeme müssen in der Lage sein, tausende von Transaktionen pro Sekunde auf Betrug zu überprüfen und einen Kompromiss zwischen Falschalarmen, d.h. berechtigten Transaktionen, die irrtümlicherweise als Betrug klassifiziert werden, und unerkanntem Missbrauch finden. Falschalarme verärgern nämlich Kunden und führen zu aufwendigen Abklärungen.

Umsetzung

Das entscheidende Kriterium für den Einsatz von Streaming Analytics ist der realisierte Nutzen. Umfragen zeigen, dass mehr als die Hälfte der Analytics Projekte den erwarteten Erfolg verfehlt. Deshalb sollte ein systematisches Nutzenmanagement sicherstellen, dass sämtliche Vorhaben einen nennenswerten Nutzen erzielen. Für die ersten Projekte ist es empfehlenswert, kleine und klar abgegrenzte Probleme für einen raschen, motivierenden Erfolg („Quick Win“) auszuwählen. Kundensegmentierung und Empfehlungssysteme sind dazu gut geeignet. Das Churn Management ist komplexer und daher in einer frühen Phase weniger sinnvoll. Prototypen helfen, das gewählte Vorgehen rasch zu überprüfen. Darüber hinaus ist es ratsam, größere Projekte in mehrere kleine zu unterteilen. Um das Risiko eines Scheiterns zu beschränken, sollten Streaming-AnalyticsVorhaben schrittweise und iterativ im Unternehmen eingeführt und die Verbreitung von Streaming Analytics durch Schulungen gefördert werden. Die Koordination aller verwandten Aktivitäten kann einem Kompetenzzentrum für Streaming Analytics anvertraut werden.

Fazit

Streaming Analytics umfasst die kombinierte Anwendung von Know How aus folgenden Bereichen: Verteilte Datenhaltung und –verwaltung, Signalverarbeitung sowie Statistik und Data Mining. Für Organisationen ohne dies- bezügliche Erfahrung ist die Einführung von Streaming Analytics mit Risiken verbunden. Es empfiehlt sich daher, ein relevantes, überschaubares Problem zu identifizieren, das sich mit Streaming Analytics gut lösen lässt. Am besten schrittweise und mithilfe kleiner Prototypen. Ein Kompetenzzentrum für Streaming Analytics soll helfen,
Streaming Analytics im Unternehmen zu verbreiten. 

www.trivadis.de

 

GRID LIST
Analytics Summit 2017

Google Analytics Konferenz in Deutschland

Bereits zum sechsten Mal veranstaltet der zertifizierte Google Analytics Partner Trakken…
Tb W190 H80 Crop Int 8934e8c1736b537d6fa8ae0594f8bc01

Digitale Signatur trotzt Quantencomputern

Die Kryptografie und die Rechenkraft von Computern sind in einem ständigen Wettlauf:…
Stefan Müller

Hitachi Vantara ein neuer Player entsteht auf dem Markt | Kommentar

Die Data Intelligence-Szene wurde aufgemischt: Hitachi gab die Fusion seiner Sparten…
Digitalisierung Auto

Datenmanagement: Die Autobranche sucht das Geschäft der Zukunft

Uber hat einen höheren Börsenwert als General Motors; Tesla verkauft seine…
Programmcode

Programmcode von Yago ist nun für jedermann nutzbar

Im Internet hat fast jedes Wort mehr als eine Bedeutung, was die Suche oft mühsam macht.…
Digitalle Frau

Qualtrics führt iQ ein

Qualtrics iQ soll eine vorausschauende Intelligenz und maschinelle Lernverfahren…
Frische IT-News gefällig?
IT Newsletter Hier bestellen:

Newsletter IT-Management
Strategien verfeinert mit profunden Beiträgen und frischen Analysen

Newsletter IT-Security
Pikante Fachartikel gewürzt mit Shortnews in Whitepaper-Bouquet