Anzeige

Anzeige

VERANSTALTUNGEN

IT-SOURCING 2019 – Einkauf meets IT
09.09.19 - 10.09.19
In Düsseldorf

IT-Sourcing 2019 - Einkauf meets IT
09.09.19 - 10.09.19
In Düsseldorf

ACMP Competence Days Berlin
11.09.19 - 11.09.19
In Stiftung Deutsches Technikmuseum Berlin, Berlin

MCC CyberRisks - for Critical Infrastructures
12.09.19 - 13.09.19
In Hotel Maritim, Bonn

Rethink! IT 2019
16.09.19 - 17.09.19
In Berlin

Anzeige

Anzeige

Programmieren Code Shutterstock 172683092 700

Um innovative Software-Angebote am Puls der Zeit zu entwickeln, muss das Development und Testing unter realitätsnahen Bedingungen und mit „echten“ Daten erfolgen. Gleichzeitig müssen Kosten reduziert und die Agilität gefördert werden. Fünf Gründe, warum die DataOps-Technologie diese Anforderungen erfüllt und damit die Software-Entwicklung beschleunigt. 

Das zügige Umsetzen von innovativen Ideen in digitale Angebote ist erfolgsentscheidend. Dies setzt allerdings voraus, dass Software-Entwicklern und -Testern Daten in der erforderlichen Güte und Schnelligkeit bereitstehen. Zudem gilt es, die Informationsbestände abzusichern und parallel eine Maskierung sensibler Daten durchzuführen. Dieses Anforderungsprofil erfüllt die DataOps-Technologie, die Datenbanken, Applikationen und Dateisysteme auf einfache Weise virtualisiert. Minas Botzoglou, Regional Director DACH bei Delphix, nennt die fünf wichtigsten Gründe, weshalb DataOps bereits heute unverzichtbar für jedes Unternehmen ist, das sich ernsthaft mit der Digitalisierung auseinandersetzt.

Überzeugende Datenqualität

DataOps-Lösungen erzeugen „Data Pods“. Das sind virtuelle Datenumgebungen, die auf Produktivdaten basieren und Software-Entwicklung unter „realen“ Bedingungen ermöglichen. In der Praxis kommen jedoch häufig synthetische Daten zum Einsatz, weil es für Unternehmen zu kompliziert, zu risikoreich, zu teuer und zu zeitaufwändig ist, zig Terabyte Daten von einem Produktivsystem zu kopieren und in eine Entwicklungsumgebung oder auf ein Testsystem zu transferieren. Künstliche Datensätze haben allerdings ein wesentliches Manko: Eine Entwicklung ohne reelle Datenbasis wirkt sich negativ auf die Präzision und die Qualität neuer Applikationen aus. DataOps hingegen automatisiert die Datenaktualisierung aus der Produktion, sodass Tests mit realen und zuverlässigen Daten erfolgen.

Beachtliches Bereitstellungstempo

Mithilfe einer DataOps-Plattform lassen sich für Entwickler, Testfachleute und Big-Data-Spezialisten innerhalb von Minuten Data Pods auf Basis der Produktivdaten bereitstellen. Ein aufwändiges Hochfahren von voluminösen Test- und Entwicklungsumgebungen ist nicht erforderlich. Beim Verwenden von physischen Datenkopien dauert es mehrere Stunden oder gar Tage bis große Datenbestände zur Verfügung stehen. So gaben die Befragten einer Delphix-Studie an, dass es im Schnitt dreieinhalb Tage dauert, bis eine Test-Umgebung zur Verfügung steht.

Multiple virtuelle Datenumgebungen auf einen Klick

DataOps-Technologien sind fähig, Datenbanken und Anwendungen sofort zu installieren oder wiederherzustellen – ungeachtet der Größe des Datensatzes. Nutzer von DataOps-Plattformen haben damit die Option, so viele Kopien der Datenbestände wie nötig zu erstellen und für spezielle Analysen zu verwenden. Das ist beispielsweise für das Aufspüren von Bugs, bei Auswertungen und für Tests sinnvoll. Zudem lassen sich separate Ausgaben für unterschiedliche Versionen einer Applikation einrichten. Ein Entwickler kann bei Bedarf Data Pods zeitweise stilllegen und wieder aktivieren oder auch zwischen verschiedenen Data Pods hin und her wechseln.

DevOps

Delphix Dynamic Data Platform (Quelle: Delphix)

Integrierter Datenschutz durch Datenmaskierung

Die EU-Datenschutzgrundverordnung (DSGVO), die für alle Unternehmen ab 25. Mai 2018 verbindlich ist, schränkt das Verwenden personenbezogener Daten ein. Denn die DGVO fordert vom datenverarbeitenden Unternehmen, die personenbezogenen Angaben nachweislich zu anonymisieren oder pseudonymisieren. Das ist vor allem in der Software-Entwicklung kritisch, da oft eine Vielzahl von Daten ungeschützt auf unterschiedlichen Entwicklungs- und Testumgebungen abliegt. Auch wenn externe Entwickler Zugriff auf Unternehmensdaten benötigen, wird dies zur Herausforderung. Das „Maskieren“ personenbezogener Informationen ist eine sichere Möglichkeit, um Daten irreversibel zu anonymisieren. Dadurch lassen sich keine Rückschlüsse auf die Identität von Personen schließen. Gleichzeitig werden die sensitiven Daten mit fiktiven, aber realistischen Beständen ersetzt, welche das Entwickeln unter realen Bedingungen gewährleistet. Eine ausgereifte DataOps-Lösung verfügt dabei über Instrumente oder Schnittstellen zu Tools und Skripten von Drittanbietern, um eine gesetzeskonforme Datenmaskierung zu automatisieren.

Niedriger Speicherplatzbedarf, höhere Effizienz

Jede virtuelle Datenkopie benötigt nur einen Bruchteil des Speicherplatzes der physischen Version. Aus 10 TByte Produktivdaten wird beispielsweise ein Data Pod von nur 10 GByte. Dadurch verschlanken sich Entwicklungs- und Testumgebungen oft bis auf ein Drittel. Entwickler arbeiten zudem produktiver, weil sie nicht mehr bis zu 50 Prozent ihrer Arbeitszeit mit Verwaltungsprozessen verschwenden. Der Nutzer kontrolliert seine Data Pods effizienter über eine Self-Service-Funktion. Zudem stehen Entwicklern DevOps-Werkzeuge zur Verfügung, mit denen sich ihre Aufgaben und Prozesse automatisieren lassen. Dank Datenvirtualisierung- und Deduplizierungstechnik beschleunigt eine DataOps-Plattform auch die Datenübertragung, wodurch eine Cloud-Migration bis zu 50 Prozent schneller abläuft.

DataOps - so funktioniert's

Eine DataOps-Lösung lässt sich auf allen gängigen Hypervisors installieren. Standardschnittstellen binden Datenbanken wie Oracle, SQL Server, DB2, mySQL oder Sybase, aber auch Applikationen als Datenquellen ein. Von diesen Daten und Applikationen wird eine komprimierte Kopie erstellt, die ständig inkrementell mit der Datenbasis synchronisiert wird. Es werden also nur die Änderungen an den Datenquellen selbst in die Datenkopie übertragen. Die komprimierten Kopien, auch „Data Pods“ genannt, lassen sich in beliebiger Menge erstellen und können so für Entwickler, Tester oder Datenanalysten bereitgestellt werden. Individuelle Self-Service-Zugänge ermöglichen es Administratoren Zugriffsrechte festzulegen und die entsprechend benötigten Datensätze freizugeben. Somit lässt sich die nötige Kontrolle durch Daten-Administratoren mit der schnellen Bereitstellung von Daten für agiles Entwickeln und Testing in Einklang bringen. DataOps-Plattformen lassen sich sowohl in Unternehmensrechenzentren, in Public oder auch Hybrid-Clouds betreiben.  

Minas Botzoglou

 

Autor: Minas Botzoglou, Regional Director DACH bei Delphix

GRID LIST
Legacy Software

Techniken für die iterative Evolution von Softwarearchitekturen

Die Modernisierung von Altsoftware stellt viele Unternehmen vor große Probleme. Die…
Tb W190 H80 Crop Int A39ec1634b6fc9233784a95637dc42bc

Launch von DataCore ONE

DataCore Software stellt DataCore ONE, seine Vision für die Zukunft der…
Tb W190 H80 Crop Int Da80864986fb7f49d34cb91146f02fbf

Neue Lösungen für die sichere Software-Entwicklung mit DevOps

Wallix hat eine Erweiterung seiner Software-Suite Bastion mit AAPM-Funktion…
Tb W190 H80 Crop Int 466f1890fcf279838e38dccd68ae1976

Warum Office 365 für Stau im Netzwerk sorgen kann

Acht Jahre nach dem Start von Office 365 hat die Cloud-basierte Suite einen…
Open Source

5 Grundsätze sicherer Open Source Software

Kaum ein Software-Projekt beginnt heute noch auf der grünen Wiese. Das können sich…
Tb W190 H80 Crop Int B490a1415bc3eedf623063b55a5a78d4

Die Blockchain im Gebrauchtsoftware-Markt

Die Blockchain ist zurzeit in aller Munde. Insbesondere im Zusammenhang mit dem Kauf…