Anzeige

Datenwelt

Ob in Zeiten von Pandemien, im Handel oder am Finanzmarkt: Große Mengen an Daten werden meist als Gewinn gesehen. Dennoch ist ihre Verwertung oft eine Herausforderung, denn je höher die Komplexität und Menge der Daten ist, umso komplexer und langwierig wird auch deren Verarbeitung. 

Wissenschaftler Gregor Kastner vom Institut für Statistik und Mathematik der Wirtschaftsuniversität Wien arbeitet in einem FWF-geförderten Projekt daran, das Verarbeiten hochdimensionaler Daten zu vereinfachen und zu beschleunigen. 

Die Digitalisierung schafft enorme Möglichkeiten, viele Daten auch über einen langen Zeitraum, also in Zeitreihen, zu sammeln. Die Menge an gesammelten Daten nimmt stetig zu – egal ob im Handel, im Kampf gegen Pandemien, bei der Beobachtung des Finanzmarkts oder für volkswirtschaftliche Analysen in der Wissenschaft. Gregor Kastner erklärt: „Heute können wir Unmengen an Daten sammeln und viele Entwicklungen über lange Zeitspannen hinweg beobachten – seien es Aktienkurse, Bevölkerungsentwicklungen, Verkaufszahlen oder die Zahlen von Erkrankten während der Corona-Pandemie. Je mehr Daten wir erfassen, desto komplexer können natürlich auch die darin enthaltenen Informationen sein. Wir stehen vor der Herausforderung, diese oft riesigen Informationsmengen so schnell wie möglich zu analysieren. Denn nur so können wir daraus rasche Zukunftsprognosen und Handlungsempfehlungen ableiten. Aber selbst mit modernen Cloud-Computing-Lösungen dauert die Schätzung aktueller statistischer Modelle oft Stunden bis Tage. Zeit, die uns manchmal einfach nicht zur Verfügung steht. “ Um dieses Problem zu lösen, entwickelt Kastner gemeinsam mit einem interdisziplinären Team Algorithmen und Software-Tools, die zuverlässige Ergebnisse in kürzerer Zeit liefern. 

Komplexität reduzieren für bessere Prognosen

In seinen Modellen konzentrieren sich der Wissenschaftler und seine KollegInnen auf die für eine Auswertung wesentlichen Daten. „Vereinfachen“ ist das zentrale Stichwort. „Die komplexen Zeitreihen mit enormen Mengen an Daten, die wir durch langfristige Beobachtungen von Aktienkursen, Bevölkerungszahlen etc. erhalten, stellen uns statistisch gesehen vor ein hochdimensionales Problem“, erklärt der Mathematiker. „Wir brechen diesen hochdimensionalen Datenraum auf einen niedrigdimensionalen herunter, indem wir uns anschauen, welche Gemeinsamkeiten es zwischen den Zeitreihen gibt und auf welche Informationen wir verzichten können, weil sie zur Beantwortung unserer Fragen nicht wichtig sind.“ Ein von Kastner mitentwickeltes Modell extrahiert die gemeinsame Dynamik dieser Zeitreihen, um die Analyse zu vereinfachen – ein „Factor Stochastic Volatility Model“, das den hochdimensionalen Raum zu einem niedrigdimensionalen, kleineren Raum werden lässt.

Darüber hinaus können mit Hilfe eines Bayesschen Ansatzes sogenannte „shrinkage priors“ zum Einsatz kommen, die den Einfluss überflüssiger Parameter gegen Null ziehen. „So wird unnötige Modellkomplexität reduziert. Damit können wir einerseits Zeit sparen und andererseits Prognosen über zukünftige Entwicklungen deutlich verbessern“, so Kastner. 

80.000 Downloads: Ein weiterer Schritt in die digitale Zukunft

Die von Kastner entwickelten, neuen Algorithmen werden in der Open-Source- und frei verfügbaren Software R zugänglich gemacht. Dies ermöglicht es anderen Wissenschaftlerinnen und Wissenschaftlern, große Informationsmengen leichter zu analysieren und zu eigenen Schlussfolgerungen und Vorhersagen zu kommen.

„Meine Software-Werkzeuge können dazu beitragen, gewisse rechnerischen Herausforderungen zu bewältigen, die das digitale Zeitalter mit sich bringt“, so Kastner. Wie hoch der Bedarf ist, zeigt die starke Nachfrage nach seiner Software: Alleine vom RStudio CRAN Mirror wurden die Software-Pakete über 80.000 Mal heruntergeladen. Auch die ersten Anwendungsfelder finden sich bereits: im Bereich von Aktien- und Wechselkursen, bei makroökonomischen Datenanalysen wie dem Konjunkturzyklus oder bei der Beobachtung der Preisentwicklung von Produkten.

Das Forschungsprojekt, das unter der Leitung von Gregor Kastner gemeinsam mit der Universität Salzburg, der Technischen Universität Wien und dem Österreichischen Wirtschaftsforschungsinstitut durchgeführt wird, erhielt im Jahr 2018 vom Wissenschaftsfond FWF den mit knapp 2 Millionen Euro dotierten Grant für disziplinen- und institutionenübergreifende Zukunftskollegs. 

https://cran.r-project.org/web/packages/factorstochvol/vignettes/paper.pdf

 


Weitere Artikel

2022

5 Trends, mit denen sich Daten 2022 effektiver nutzen lassen

Die Beschleunigung der digitalen Transformation in den letzten zwei Jahren hat den Verantwortlichen deutlich aufgezeigt, dass sie mehr darauf achten sollten, wie sie Unternehmensdaten managen, die über verschiedene Speicherorte verteilt sind, gleichzeitig…
Geschäftsmann

Banken stehen beim digitalen Kundenmanagement noch am Anfang

Kundenstammdaten werden von Banken im DACH-Raum noch nicht in ausreichendem Masse systematisch erhoben, aktualisiert und für personalisierte Kundenbeziehungen eingesetzt. Das ergab eine Studie* des CRM-Herstellers BSI in Kooperation mit dem Institut für…
Datenanalyse

Mit Embedded Analytics maximalen Nutzen aus den Daten gewinnen

Rund um den Zugriff und die Analyse von Daten steigen die Investitionen von Unternehmen, nicht zuletzt auch in der Fertigungsindustrie. Durch die Optimierung des Datenmanagements sollen die Herausforderungen der Digitalisierung gemeistert werden und der…
Recruiting

Wie Tools für maschinelles Lernen und Low-Code/No-Code beim IT-Fachkräfte-Mangel helfen

Die Ergebnisse einer kürzlich von Quanthub veröffentlichten Studie zeigen, dass bereits im Jahr 2020 weltweit 250.000 Data Scientists fehlten. Außerdem bleiben Data Scientists im Durchschnitt nur 2,6 Jahre im Unternehmen. Angesichts der monatelangen…
business intelligence

Scalable BI Self Service – der Boost für BI-Architekturen

Bei Business Intelligence (BI)-Initiativen lassen sich gleich mehrere zentrale Zielsetzungen ausmachen. Auf der Wunschliste vieler BI-Anwender stehen einfache und schnelle Auswertungen. Ein unkomplizierter Zugriff und die Analyse relevanter Daten zur…
2022

Prognosen 2022: Smarte Datennutzung als Wettbewerbsvorteil

Exasol hat seine Prognosen für das Jahr 2022 veröffentlicht. Sie zeigen, wie Daten Unternehmen zu einem Wettbewerbsvorteil verhelfen werden. In den letzten Jahren haben die Unternehmen auf der ganzen Welt erkannt, welche Macht Daten haben.

Anzeige

Jetzt die smarten News aus der IT-Welt abonnieren! 💌

Mit Klick auf den Button "Zum Newsletter anmelden" stimme ich der Datenschutzerklärung zu.