Anzeige

Datenwelt

Ob in Zeiten von Pandemien, im Handel oder am Finanzmarkt: Große Mengen an Daten werden meist als Gewinn gesehen. Dennoch ist ihre Verwertung oft eine Herausforderung, denn je höher die Komplexität und Menge der Daten ist, umso komplexer und langwierig wird auch deren Verarbeitung. 

Wissenschaftler Gregor Kastner vom Institut für Statistik und Mathematik der Wirtschaftsuniversität Wien arbeitet in einem FWF-geförderten Projekt daran, das Verarbeiten hochdimensionaler Daten zu vereinfachen und zu beschleunigen. 

Die Digitalisierung schafft enorme Möglichkeiten, viele Daten auch über einen langen Zeitraum, also in Zeitreihen, zu sammeln. Die Menge an gesammelten Daten nimmt stetig zu – egal ob im Handel, im Kampf gegen Pandemien, bei der Beobachtung des Finanzmarkts oder für volkswirtschaftliche Analysen in der Wissenschaft. Gregor Kastner erklärt: „Heute können wir Unmengen an Daten sammeln und viele Entwicklungen über lange Zeitspannen hinweg beobachten – seien es Aktienkurse, Bevölkerungsentwicklungen, Verkaufszahlen oder die Zahlen von Erkrankten während der Corona-Pandemie. Je mehr Daten wir erfassen, desto komplexer können natürlich auch die darin enthaltenen Informationen sein. Wir stehen vor der Herausforderung, diese oft riesigen Informationsmengen so schnell wie möglich zu analysieren. Denn nur so können wir daraus rasche Zukunftsprognosen und Handlungsempfehlungen ableiten. Aber selbst mit modernen Cloud-Computing-Lösungen dauert die Schätzung aktueller statistischer Modelle oft Stunden bis Tage. Zeit, die uns manchmal einfach nicht zur Verfügung steht. “ Um dieses Problem zu lösen, entwickelt Kastner gemeinsam mit einem interdisziplinären Team Algorithmen und Software-Tools, die zuverlässige Ergebnisse in kürzerer Zeit liefern. 

Komplexität reduzieren für bessere Prognosen

In seinen Modellen konzentrieren sich der Wissenschaftler und seine KollegInnen auf die für eine Auswertung wesentlichen Daten. „Vereinfachen“ ist das zentrale Stichwort. „Die komplexen Zeitreihen mit enormen Mengen an Daten, die wir durch langfristige Beobachtungen von Aktienkursen, Bevölkerungszahlen etc. erhalten, stellen uns statistisch gesehen vor ein hochdimensionales Problem“, erklärt der Mathematiker. „Wir brechen diesen hochdimensionalen Datenraum auf einen niedrigdimensionalen herunter, indem wir uns anschauen, welche Gemeinsamkeiten es zwischen den Zeitreihen gibt und auf welche Informationen wir verzichten können, weil sie zur Beantwortung unserer Fragen nicht wichtig sind.“ Ein von Kastner mitentwickeltes Modell extrahiert die gemeinsame Dynamik dieser Zeitreihen, um die Analyse zu vereinfachen – ein „Factor Stochastic Volatility Model“, das den hochdimensionalen Raum zu einem niedrigdimensionalen, kleineren Raum werden lässt.

Darüber hinaus können mit Hilfe eines Bayesschen Ansatzes sogenannte „shrinkage priors“ zum Einsatz kommen, die den Einfluss überflüssiger Parameter gegen Null ziehen. „So wird unnötige Modellkomplexität reduziert. Damit können wir einerseits Zeit sparen und andererseits Prognosen über zukünftige Entwicklungen deutlich verbessern“, so Kastner. 

80.000 Downloads: Ein weiterer Schritt in die digitale Zukunft

Die von Kastner entwickelten, neuen Algorithmen werden in der Open-Source- und frei verfügbaren Software R zugänglich gemacht. Dies ermöglicht es anderen Wissenschaftlerinnen und Wissenschaftlern, große Informationsmengen leichter zu analysieren und zu eigenen Schlussfolgerungen und Vorhersagen zu kommen.

„Meine Software-Werkzeuge können dazu beitragen, gewisse rechnerischen Herausforderungen zu bewältigen, die das digitale Zeitalter mit sich bringt“, so Kastner. Wie hoch der Bedarf ist, zeigt die starke Nachfrage nach seiner Software: Alleine vom RStudio CRAN Mirror wurden die Software-Pakete über 80.000 Mal heruntergeladen. Auch die ersten Anwendungsfelder finden sich bereits: im Bereich von Aktien- und Wechselkursen, bei makroökonomischen Datenanalysen wie dem Konjunkturzyklus oder bei der Beobachtung der Preisentwicklung von Produkten.

Das Forschungsprojekt, das unter der Leitung von Gregor Kastner gemeinsam mit der Universität Salzburg, der Technischen Universität Wien und dem Österreichischen Wirtschaftsforschungsinstitut durchgeführt wird, erhielt im Jahr 2018 vom Wissenschaftsfond FWF den mit knapp 2 Millionen Euro dotierten Grant für disziplinen- und institutionenübergreifende Zukunftskollegs. 

https://cran.r-project.org/web/packages/factorstochvol/vignettes/paper.pdf

 


Weitere Artikel

Datenanalyse

Wettbewerbsnachteile wegen fehlender Datenkompetenzen

Fehlende Datenkompetenzen in der Breite der Belegschaft werden zu einem zentralen Bremser für die digitale Transformation deutscher Unternehmen. So lautet ein Ergebnis einer repräsentativen Umfrage* unter mehr als 1.000 Mitarbeiterinnen und Mitarbeitern, die…
Datenmanagement

Datenmanagement: Befähigte Anwender:innen treiben Investitionen voran

Das Analystenhaus BARC präsentiert "The Data Management Survey 22". Die Studie hat in ihrer dritten jährlichen Ausgabe 1.101 Fachkräfte zur Auswahl und Nutzung von Datenmanagement-Werkzeugen befragt. Auszüge der englischsprachigen Studie veröffentlicht BARC…
Analyse

Neue Ausgabe des BARC Score Analytics for Business Users

Das Analystenhaus BARC (Business Application Research Center) präsentiert den BARC Score Analytics for Business Users. In seiner zweiten Ausgabe bewertet und vergleicht der BARC Score 16 global marktrelevante Hersteller von Self-Service Analytics Plattformen.

Anzeige

Jetzt die smarten News aus der IT-Welt abonnieren! 💌

Mit Klick auf den Button "Zum Newsletter anmelden" stimme ich der Datenschutzerklärung zu.