VERANSTALTUNGEN

IT-Sourcing 2018
03.09.18 - 04.09.18
In Hamburg

DILK 2018
17.09.18 - 19.09.18
In Düsseldorf

abas Global Conference
20.09.18 - 21.09.18
In Karlsruhe

it-sa 2018
09.10.18 - 11.10.18
In Nürnberg

Digital Marketing 4Heroes Conference
16.10.18 - 16.10.18
In Wien und München

Die italienische Softwarefirma CGnal hat ein Konzept für Gebäude entwickelt, die kritische Systemfehler in der Infrastruktur selbständig vorhersehen und somit mithelfen sollen, größere Schäden und Reparaturkosten zu verhindern. 

Um den Ansatz "vorausschauende Wartung" zu testen, haben sie das Heiz- und Belüftungssystem eines Krankenhauses mit intelligenten Sensoren ausgestattet und die dabei gesammelten Daten auf Unregelmäßigkeiten hin analysiert. Das Ergebnis: Dem System gelang es erfolgreich, 76 von insgesamt 124 kritischen Fehlern rechtzeitig vor ihrem Auftreten zu prognostizieren.

Abweichungen melden

"Ziel der vorausschauenden Wartung ist es, das Auftreten möglicher Fehler rechtzeitig vorherzusagen, um proaktiv agieren und die nötigen Maßnahmen ergreifen zu können, die ein weiteres Funktionieren der Anlagen sicherstellen", heißt es auf der CGnal-Webseite. In der Praxis ließe sich dieser Ansatz einfach umsetzen, indem kritische Infrastruktur wie etwa die Heizungs-, Belüftungs- oder Klimaanlagen mit intelligenten Sensoren versehen werden. "Dadurch erhält man zum Beispiel kontinuierlich Daten zur Temperatur, Luftfeuchtigkeit oder dem Stromverbrauch. Gibt es Abweichungen vom Normalwert, könnte ein Fehler vorliegen oder unmittelbar bevorstehen", so die Erläuterung.

"Wir haben unsere Tests gerade deshalb in einem Krankenhaus durchgeführt, weil dort die Systeme zur Heizung, Belüftung und Klimaregulierung besonders wichtig sind", zitiert der "NewScientist" Carlo Annis von eFM. "Mithilfe von Sensoren und solchen Algorithmen, die gewissermaßen in die Zukunft schauen können, wäre es möglich, kritische Fehler schon zu erkennen, bevor sie zu einem echten Problem werden. Das würde uns eine Menge unnötige Arbeit ersparen", ist Annis überzeugt.

Algorithmus lernt dazu

Für ihren Praxistest haben die Ingenieure von CGnal einen speziellen Algorithmus entwickelt, der dem Prinzip des maschinellen Lernens folgend selbständig in der Lage ist, bestimmte konkrete Zusammenhänge und Muster in den gesammelten Datenmengen zu erkennen und auszuwerten. Den Algorithmus haben die Experten anschließend mit Daten gefüttert, die Sensoren in den Heiz-, Belüftungs- und Klimaanlagen des betreffenden Krankenhauses im Laufe des ersten Halbjahres 2015 gesammelt hatten.

Als nächster Schritt wurden die Daten aus dem zweiten Halbjahr desselben Jahres in das System eingegeben. Im Vergleich der beiden Datensätze wurden dann ungewöhnliche Messwerte oder Abweichungen von der Norm automatisch erkannt und analysiert. Die dabei erzielte Erfolgsquote bei der Berechnung von künftigen Fehlern ist beachtlich: Von insgesamt 124 realen Problemen konnten 76 akkurat vorhergesagt werden. "Die Falsch-Positiv-Rate lag bei lediglich knapp fünf Prozent", schildert eFM-Experte Annis.

pte

 

GRID LIST
Hacker

So schützen Sie Ihre Online-Konten vor Fremdzugriffen

Immer wieder greifen Hacker Nutzerkonten bei Google, Facebook, Instagram und anderen…
Smart Home

Sicherheitslücke in IoT-Steckdose entdeckt

Das Forscherteam von McAfee hat eine Sicherheistlücke im Wemo Insight Smart Plug, einer…
Smartphone

Kostenlose Apps verlangen übermäßigen Zugriff auf persönliche Daten

Wie viele persönliche Daten sammeln Ihre Apps? Die 60 bis 90 Apps, die der…
David Helfer

David Helfer ist neuer Vertriebsleiter in Europa bei F5

F5 Networks hat David Helfer zum neuen Senior Vice President of Sales für Großbritannien,…
Matroschka

Malware-Matroschka: Windows-Wurm in Android-Backdoor eingebettet

Im vergangenen Monat erregte eine Android-Backdoor das Aufsehen der Virenanalysten von…
Firmenübernahme

Orange schließt Übernahme der Basefarm Holding ab

Orange gab bekannt, dass die Übernahme von 100% von Basefarm durch die…
Smarte News aus der IT-Welt

IT Newsletter


Hier unsere Newsletter bestellen:

 IT-Management

 IT-Security