Die Chiptechnologie von morgen

Die Technische Universität Ilmenau hat ein europäisches Forschungsprojekt erfolgreich abgeschlossen, in dem neue Technologien zur Entwicklung elektronischer Chips der Zukunft entwickelt wurden. 

In dem 18-Millionen-Euro-Projekt erforschten 16 Partner aus Wissenschaft und Industrie unter der Führung des Ilmenauer Wissenschaftlers Professor Ivo W. Rangelow technologische Verfahren zur Herstellung von Transistoren, deren kleinste Bauteile nur zwei Nanometer klein sind – dabei entspricht ein Nanometer dem Millionsten Teil eines Millimeters. Die Ergebnisse des Projekts ermöglichen die Massenfertigung einer neuen Elektronik-Generation: unter anderem extrem energiesparende und hochleistungsfähige Computer, Smartphones und Tablets.

Anzeige

In den vergangenen 50 Jahren erlebte die moderne Informationsgesellschaft eine fulminante technologische Entwicklung. Elektronische Chips für Computer, Handys und Tablets wurden immer schneller und leistungsfähiger. Die Anzahl der Schaltelemente auf einem einzelnen Chip wurde von 2.300 im Jahr 1970 auf heute über 1,3 Billionen erhöht. Vor 45 Jahren waren die kleinsten Teile dieser Billionen Transistoren noch so groß wie der Durchmesser eines menschlichen Haars, etwa 75.000 Nanometer. Heute liegen die Abmessungen bei nur noch 14 Nanometern.

Elektronische Bauelemente werden immer kleiner, aber das Ende der Miniaturisierung mit herkömmlichen Technologien ist absehbar. Experten vermuten, dass zwischen 2025 und 2035 die physikalische Konstruktionsgrenze heutiger Transistoren erreicht sein wird. Leistungsfähige elektronische Geräte bei gleichzeitig möglichst niedrigem Energieverbrauch erfordern nicht nur völlig neu konzipierte Transistoren, sondern auch immer kleinere Strukturen für diese Halbleiter-Bauelemente. Zudem muss es möglich sein, die winzigen Strukturen in Massenfertigung herzustellen. Derzeit ist der Betrieb solcher Transistoren nur im Labor bei extrem tiefen Temperaturen von unter minus 200 Grad möglich.

Die Ergebnisse des europäischen Verbundprojektes „Single Nanometer Manufacturing for beyond CMOS Devices (SNM)“, ermöglichen nun die Massenfertigung einer neuen Generation hochleistungsfähiger und extrem energiesparender Elektronik. Je kleiner die in einem Transistor verarbeiteten Strukturen, desto mehr Transistoren finden auf dem CPU, dem Hauptprozessor, Platz, und umso leistungsfähiger wird der Computer. Die Erhöhung der Rechenkapazität ebenso wie die der Speicherkapazität sind für die längst begonnene Erweiterung des Internets zum Internet der Dinge dringend notwendig. Nur so wird es in der digitalen Welt möglich sein, den Computer mit immer mehr „intelligenten“ Gegenständen aus der Alltagswelt zu verbinden, damit Computer, Kühlschrank & Co. miteinander kommunizieren können.

Dabei wird die höhere Rechnerleistung sogar bei wesentlich geringerem Energieverbrauch erzielt. Die Akkuleistung mobiler elektronischer Geräte wie Laptops und Smartphones ist heute eine ihrer größten Schwachstellen. Um den Energieverbrauch von hochintegrierten elektronischen Schaltungen und damit von elektronischen Geräten drastisch zu reduzieren, kombinierten Prof. Rangelow und sein Forscherteam bisherige Herstellungsverfahren auf neue Art und Weise oder sie entwickelten gar vollkommen neue, innovative Methoden. Dadurch könnte der Energieverbrauch mobiler Geräte mittelfristig um das 25-fache gesenkt werden.

Prof. Rangelow mahnt aber zur Vorsicht, die Erwartungen zu hoch zu schrauben: „Der Energieverbrauch eines Handys hängt von so vielen Faktoren ab, dass eine Einsparung in der Größenordnung zwar theoretisch möglich ist, aber nicht wissenschaftlich seriös vorhergesagt werden kann. Ganz sicher aber haben wir mit unseren neuen Verfahren den Weg dafür geebnet, dass ein Nutzer sein Handy in Zukunft wesentlich seltener wieder aufladen muss. Ich könnte mir vorstellen: statt heute jeden Tag nur noch etwa alle fünf Tage.“

Die Herstellung elektronischer Bauelemente mithilfe von Lithographie-, also von Schreibverfahren, erfolgt in zwei Schritten. Zunächst werden die Strukturen in eine Lackschicht „geschrieben“. Damit wird, wie bei der Negativherstellung in der analogen Fotografie, die Maske für den zweiten Schritt erstellt. Anschließend werden die Strukturen von der Lackschichtmaske in das Silizium geätzt – aus dem „Negativ“ wird das eigentliche „Positiv-Foto“, das elektronische Bauteil. Bis ein vollständiger, ultrakleiner Schaltkreis hergestellt werden kann, müssen die einzelnen, äußerst komplexen Schritte dutzend-, ja hundertfach ausgeführt werden. Mithilfe sogenannter langsamer Elektronen modellierten die Wissenschaftler an der TU Ilmenau mit einer oder mehreren Nanometer großen Spitzen Strukturen im Bereich unter zehn Nanometern. Dieses Schreibverfahren, Raster-Sonden-Technik genannt, ermöglicht nicht nur das Schreiben, sondern auch das Lesen und die ultragenaue Anordnung von Nanostrukturen.

Für Prof. Rangelow ist die Entwicklung elektronischer Strukturen von unter zwei Nanometern eine herausragende wissenschaftliche Leistung: „Weltweit werden intensiv Technologien gesucht und erforscht, die Computer der Zukunft, sogenannte Quantencomputer, ermöglichen. Im Unterschied zu herkömmlichen Digitalrechnern basieren diese Computer ausschließlich auf Gesetzen der Quantenmechanik. Quantencomputer werden ungleich leistungsfähiger sein, denn mit ihnen könnten wir bestimmte Probleme der Informatik, zum Beispiel die Suche in extrem großen Datenbanken, vermeiden. Die von uns entwickelte Raster-Sonden-Technik hat mit der Herstellung von zwei Nanometer kleinen Strukturen das Tor in diese neue Quantencomputerwelt ein gutes Stück geöffnet.“

www.tu-ilmenau.de

 

Anzeige

Weitere Artikel

Newsletter
Newsletter Box

Mit Klick auf den Button "Jetzt Anmelden" stimme ich der Datenschutzerklärung zu.