Anzeige

Anzeige

VERANSTALTUNGEN

Software Quality Days 2019
15.01.19 - 18.01.19
In Wien

CloudFest 2019
23.03.19 - 29.03.19
In Europa-Park, Rust

SMX München
02.04.19 - 03.04.19
In ICM – Internationales Congress Center München

Anzeige

Anzeige

Anzeige

KI ML Tafel Shutterstock 705165757 700

Maschinelles Lernen (ML) hat deutliche Fortschritte gemacht. Der Streaming-Service Netflix nutzt diese Technik beispielsweise, um seinen Nutzern maßgeschneiderte TV-Angebote zu servieren, und Googles App "Arts & Culture" ist dank ML in der Lage, die Doppelgänger von Smartphone-Nutzern in weltbekannten Kunstwerken aufzuspüren. 

Doch wenn es um den Einsatz von Machine Learning in Unternehmen geht, sieht die Sachlage anders aus. Umfassende, komplexe Machine Learning-Applikationen sind im Unternehmensumfeld nach wie vor Mangelware.  AppDynamics nennen dafür acht Gründe:

Unklarheit, was maschinelles Lernen ist

Selbst IT-Fachleute wissen oft nicht, was unter Machine Learning zu verstehen ist. De facto heißt ML, dass mathematische Verfahren eingesetzt werden, um große Datenmengen nach Mustern zu durchsuchen. Die Algorithmen entfernen dazu störendes "Rauschen" (Noise) aus den Daten-Samples.

Nutzen ist nicht offenkundig

Die Stärke von ML-Algorithmen ist, dass sie sich ohne Zutun von Menschen an Systeme anpassen können, die sich verändern. Dabei sind sie in der Lage, zwischen erwarteten und anormalen Verhaltensmustern zu unterscheiden. Deshalb lässt sich maschinelles Lernen in vielen Bereichen einsetzen, etwa im Gesundheitswesen und in Sicherheitsapplikationen. Gleiches gilt für Anwendungen, die Daten klassifizieren oder Nutzern Empfehlungen geben, etwa welche Waren ihren Geschmack treffen könnten. Ein weiteres Einsatzfeld ist die Sprach- und Bilderkennung.

Den richtigen Einstieg finden

Unternehmen wissen oft nicht, wie sie Machine Learning implementieren sollen. Oft erfolgt das auf zwei Arten: Mitarbeiter beginnen eigenständig damit, ML für die Datenanalyse zu nutzen. Oder ein Unternehmen schafft eine Lösung an, in die ML-Algorithmen integriert sind, etwa eine Lösung für das Performance-Management von Anwendungen.

Daten aufbereiten

Einfach Daten zu sammeln und einen ML-Algorithmus "darüber zu jagen", funktioniert nicht. Vielmehr müssen die Daten zuvor aggregiert und um fehlende Informationsbestände ergänzt werden. Zudem ist es notwendig, "Datenmüll" zu entfernen und Informationen in die richtige Reihenfolge zu bringen.

Mangel an öffentlich verfügbaren, klassifizierten Daten

Erste Schritte in Richtung Machine Learning wären einfacher, würden genügend "gelabelte" Datensätze zur Verfügung stehen. Solche Informationen sind notwendig, um Machine-Learning- und Deep-Learning-Systeme zu trainieren. Leider sind solche Informationsbestände nur begrenzt verfügbar. Daher sind Unternehmen oft zu einem "Kaltstart" gezwungen, wenn sie ein ML-Projekt initiieren.

Domain Knowledge ist gefragt

Im Idealfall ist maschinelles Lernen die perfekte Kombination eines Algorithmus und einer Problemstellung. Das bedeutet jedoch, dass ein Machine-Learning-Fachmann "Domain Knowledge" benötigt. Das sind beispielsweise spezielle Kenntnisse über die Branche, in der ein Unternehmen aktiv ist, oder über eingesetzte Fertigungstechnologien. Auch Wissen über IT-Systeme und die Daten, die sie generieren, zählt dazu.

Datenspezialisten sind kein Allheilmittel

Die meisten Data Scientists sind Mathematiker. Daher verfügen sie nicht in jedem Fall über die Domain Knowledge, die für ihren Arbeitgeber relevant ist. Solche Spezialisten sollten daher mit Analysten und Domain-Experten aus dem Unternehmen zusammenarbeiten. Das erhöht jedoch die Kosten von Machine-Learning-Projekten.

Es fehlt eine gemeinsame "Sprache"

Bei Machine-Learning-Projekten in Unternehmen gibt es häufig keine Regeln, auf welche Weise Resultate gewonnen werden sollen. Deshalb entstehen "Silos", weil Mitarbeiter unterschiedliche Daten-Samples und Definitionen der Eingabewerte verwenden. Das wiederum hat zur Folge, dass ML-Analysen höchst unterschiedliche Ergebnisse produzieren. Solche Diskrepanzen können Zweifel am Nutzen von ML schüren.

Fazit: Keine Angst vor Machine Learning!

Unternehmen, die Machine Learning einsetzen wollen, müssen somit etliche Klippen umschiffen. Dennoch sollten sie sich mit maschinellem Lernen, Deep Learning und künstlicher Intelligenz (KI) beschäftigen. Denn diese Technologien spielen bereits heute eine wichtige Rolle in Unternehmensanwendungen – und sie werden drastisch an Bedeutung gewinnen. Eine zögerliche Haltung ist somit keine gute Strategie. Denn wer den Anschluss verliert, wird dies teuer bezahlen: durch eine sinkende Wettbewerbsfähigkeit.

appdynamics.de  

GRID LIST
Tb W190 H80 Crop Int A9f94445fb0afc6518c9aadd7d203eaf

AI ON THE RISE: Ein Blick auf das IT-Jahr

Blickt man zurück auf das Jahr 2018 so erinnert man sich aus der IT Sicht vor allem an…
KI

Startschuss für eine KI-Offensive der Wirtschaft?

Am 16. November veröffentlichte die Bundesregierung ihre Strategie zur Entwicklung und…
Tb W190 H80 Crop Int 5932773f3d0fa869a9e4543903836f46

Die Zukunft des Highspeed-Internets - wann können wir es alle nutzen?

Internet und Deutschland, das ist immer noch eine Verknüpfung, die an Blechdosen und…
Tb W190 H80 Crop Int 72f4f00f38a67264795c38a29ebfca98

Intelligente Standards für die Automobilindustrie

In der jüngeren Vergangenheit hat es einen Umbruch in der vernetzten Fahrzeugtechnik…
Tb W190 H80 Crop Int 83e42abf2c83bc3b81052b099644a410

Faktor Mensch im Fokus der Digitalisierung

Industrie 4.0 und Internet of Things, Digitalisierung, Artificial Intelligence –…
Vertrauen in #Datensicherheit auf Fünf-Jahres-Hoch @Bitkom #Datenschutz  it-daily.net/analysen/19805-vertrauen-in-datensicherheit-auf-fuenf-jahres-hoch

IT-Modernisierung: Enterprise Architekten als Vermittler für digitale Transformation

Digitale Unternehmen bringen die Interaktion mit ihren Kunden auf ein neues Level.…
Smarte News aus der IT-Welt