Anzeige

Anzeige

VERANSTALTUNGEN

visiondays 2019
20.02.19 - 21.02.19
In München

SAMS 2019
25.02.19 - 26.02.19
In Berlin

Plutex Business-Frühstück
08.03.19 - 08.03.19
In Hermann-Ritter-Str. 108, 28197 Bremen

INTERNET WORLD EXPO
12.03.19 - 13.03.19
In Messe München

secIT 2019 by Heise
13.03.19 - 14.03.19
In Hannover

Anzeige

Anzeige

KI

KI liegt im Trend, aber beim Einsatz dieser Technologie können sich Unternehmen leicht vertun. Pegasystems nennt sieben häufige Fehlerquellen.

Künstliche Intelligenz (KI) wird mehr und mehr zu einer Standard-Tech­nologie. Von der industriellen Fertigung über Büroanwendungen bis zu komplexen CRM-Lösungen, überall ermöglicht KI die Automatisierung von Prozessen. Allerdings verfügen die meisten Unternehmen noch über wenig Erfahrung im Umgang mit KI. Pegasystems Inc, Anbieter von strategischen Software-Lösungen für Vertrieb, Marketing, Service und Operations, zeigt, welche Fehler bei der Implementierung von KI häufig gemacht werden.

  1. Kein echter Mehrwert: Viele Unternehmen planen den Einsatz von KI, nur weil KI ein Hype ist, nicht weil sie einen klaren Mehrwert realisieren können, beispielsweise durch höhere Kundenzufriedenheit, Cross- oder Upselling-Möglichkeiten, Prozessoptimierung oder Qualitätssteigerung.
     
  2. Fehlende Kommunikation: Wird der Einsatz von KI den Anwendern nicht kommuniziert, erfahren sie zum Beispiel gar nicht, dass sie mit einem KI-gestützten System interagieren. Das kann später zu Vertrauensverlust und zur Ablehnung führen.
     
  3. Unzureichende Datengrundlage: In der Regel ermitteln KI-Systeme aus großen Datenmengen wiederkehrende Muster; ist dabei die Datenbasis nicht ausreichend, haben die Ergebnisse keine Relevanz.
     
  4. Blindes Vertrauen: Auch wenn IT-Systeme in manchen Anwendungsfällen erstaunliche “Intelligenz” aufweisen, eignen sich nicht alle Anwendungsfälle für KI; etwa wenn keine hinreichend operationalisierbaren Daten bereitgestellt werden können.
     
  5. Fehlende Transparenz: Aufgrund der großen Anzahl von Einflussfaktoren und Methoden für die Ermittlung von KI-Ergeb­nissen kann es schwierig bis unmöglich sein, ex post nachzuvollziehen, wie ein bestimmtes Ergebnis zustande gekommen ist. Je nach Anwendungsfall kann es jedoch notwendig sein, eine entsprechende Transparenz sicherzustellen, zum Beispiel bei Therapieempfehlungen.
     
  6. Mangelnde Flexibilität: KI wird so konzipiert, dass die Fachabteilungen keine ausreichenden Möglichkeiten zur Anpassung haben; die Mitarbeiter der Fachabteilungen müssen jedoch in der Lage sein, KI-Lösun­gen selbständig zu parametrisieren, um agil mit verschiedenen Szenarien experimentieren zu können.
     
  7. Fehlende Praxistauglichkeit: Unternehmen realisieren häufig KI-Lösungen, die zwar in Pilot-Projekten gut funktionieren, die aber in der Praxis nicht gut skalieren; die verwendeten KI-Verfahren müssen in großen Anwendungen mit zahlreichen Nutzern – beispielsweise in Web-Infrastrukturen – in kurzer Zeit Antworten liefern; als Richtwert sollten Antwortzeiten von weniger als 50 Millisekunden möglich sein.

"Für viele Unternehmen ist KI eine neue Disziplin, und man kann daher nicht erwarten, dass die Verfahren schon so funktionieren, wie wir das bei anderen Technologien gewohnt sind. Wir müssen hier vielmehr mit höheren Fehlerquoten rechnen", erklärt Carsten Rust, Director Solution Consulting DACH bei Pegasystems in München. "Das spricht keineswegs gegen KI, sondern vielmehr für einen behutsamen Umgang damit. Wichtig ist, dass sich Anwender der Fallstricke bewusst sind, wenn sie KI-Systeme realisieren."

www.pega.com
 

GRID LIST
KI Concept

Acht Leitlinien für die Künstliche Intelligenz

Erlangt eine neue Technologie eine solche Relevanz, wie es momentan bei künstlicher…
Roboter KI

Wir müssen die KI-Technologie demokratisieren

Deutschland will an die Weltspitze – so haben es die deutschen Politiker*innen bei der…
Thought Leadership KI

Introducing „Thought Leadership”

Mit der Rubrik Thought Leadership taucht erstmalig in den IT-Medien eine Rubrik auf die…
Digitale Transformation

Digitale Transformation leicht gemacht

Evolution ist für einen Organismus notwendig, damit er wachsen kann und anpassungsfähig…
Digital Globe

Die Zukunft der IT

Forrester prognostiziert, dass eine mutigere, immersivere Version der IT eine Reihe neuer…
Digitalisierung in 0-1-Optik vor Wolkenkratzern

Digitalisierung muss aus einem Guss sein

Cognitive Computing, Big Data & Business Analytics, Industrie 4.0, IoT, Smart Factory,…
Smarte News aus der IT-Welt